INTRODUCTION

Various inflammatory, vascular, neoplastic lesions are found in the posterolateral cranial fossa.[1] The posterolateral cranium is an important anatomical region in the neurosurgery as it houses critical neurovascular structures that are vulnerable to injury during surgical procedures. The sigmoid sinus is a venous sinus that courses from the jugular foramen to the confluence of sinuses, where it merges with the transverse sinus. The transverse sinus is a paired venous sinus that runs horizontally across the posterior cranial fossa and joins the sigmoid sinus to form the jugular bulb.

The posterolateral cranium exhibits a complex morphology due to the presence of several structures that traverse this area. The posterolateral cranium is the region located posterolateral to the external occipital protuberance and it includes various surface landmarks, the Mastoid process, Asterion, posterior root of Zygomatic arch.

Mastoid process, a conical projection, extends downwards from the lower part of mastoid part of temporal bone, behind external acoustic meatus.[2] Asterion is found at the junction of lambdoid, parietomastoid and occipitomastoid sutures.[2] The external occipital protuberance is a bony prominence located at the midline of the occipital bone that serves as an attachment point for the nuchal ligament. Most salient point of protuberance is called as Inion.[2]

Zygomatic arch is a palpable bony landmark placed horizontally between cheek & temple. Its posterior root forms lateral boundary of mandibular fossa. Neurosurgeons must localize appropriate point to place a burr hole, in the posterior cranial fossa, to prevent any bleeding during operative procedures on dural venous sinuses. Hence, A thorough understanding of its morphology is essential for neurosurgeons to safely navigate this area during surgical procedures. The safe area is a region that is free from major neurovascular structures and is used as a reference point for surgical navigation. The identification of the safe area in the posterolateral...
The cranium is essential for the safe and effective performance of surgical procedures. Neurosurgeons quite often use Asterion as an important reference point for entering into the posterior cranial fossa. Many populations specific variations are found with respect to localization of Asterion.[3] Asterion can be localized by surrounding palpable bony landmarks. Mastoid process is a compact and easily localized palpable landmark of the skull. It can resist any kind of physical injury. Hence, it stays intact in any damaged skull.[1] It can be used for localization of Asterion. Finally, location of Asterion can be predicted by measuring the distance of Asterion from posterior end of Zygoma, Inion & tip of Mastoid process. Hence, this article aims to provide an overview of the measurements of Asterion from abovementioned surface landmarks of the posterolateral cranium and find out the relation of Asterion with underlying structures, in the skulls of North Indian population.

MATERIALS AND METHODS

30 Dry skulls with fused basisphenoid sutures were used for the present study from the department of Anatomy, Rama Medical College, Hospital & Research Center, Hapur. Out of 30 skulls, 18 were hemiskulls and 12 were complete skulls. Total 60 posterolateral cranium (on Right & Left sides) of 30 dry skulls were observed & classified into type I (with Wormian bone) & type II (without Wormian bone) on the basis of presence or absence of Wormian bone in the Asterion.

Inclusion Criteria

Intact adult hemi skulls & Complete Skulls with fused basisphenoid sutures were included in present study.

Exclusion criteria

Any abnormal or deformed skull & fetal skulls were excluded from the study. Skulls with Wormian bones in the Asterion were excluded from the measurements of various parameters in the posterolateral cranium & finding out the relation of Asterion with underlying structures.

Our study included following:

1. Measurements were performed on right & left sides (Posterolateral part of the craniums) of skulls using Vernier Calliper.

Following parameters were taken:

- Distance between Asterion (A) and Posterior end of Posterior root of Zygomatic arch (Z) - AZ
- Distance between Asterion (A) & Tip of Mastoid Process (M) - AM
- Distance between Asterion (A) & Inion (I) - AI

2. Relationship of Asterion with underlying structure in the Posterior Cranial Fossa was noted in 30 Posterolateral Craniums.
RESULTS

In the present study, 9 posterolateral crania (15%) were found with Wormian bones and were classified as Type I Asterion. 51 posterolateral crania (85%) were classified as type II Asterion without Wormian bones. These 9 crania with type I Asterion were excluded from taking measurements for various parameters.

Figure 1: Classification of Asterion

[Figure 1] is a Pie chart showing that 15% of Posterolateral crania were evaluated as Type I Asterion & 85% as Type II Asterion. Total 51 posterolateral parts of the crania (25 right sided & 26 left sided) were evaluated. Mean & Standard deviations were calculated. Measurements were compared on right & left side in terms of statistical significance.

Relationship of Asterion with underlying venous sinuses was noted in 30 posterolateral crania in hemisunks. 3 (10%) Asterion were found to be against the upper border of Transverse sinuses. 21 (70%) Asterion were located at the junction of Transverse & Sigmoid venous sinuses. 6 (20%) Asterion were found to be at the lower border of Transverse sinus.

Figure 2: Average measurements on left side Posterolateral cranium

[Figure 2] shows the parameters on left side of posterolateral cranium. Longest distance was found between Asterion & Inion. Mean distance between left Asterion & Inion (AI) was 6.93+/-0.35cm. Mean distance between left Asterion & left Zygomatic Arch (AZ) was 5.73+/-0.27cm. Shortest distance was found between Asterion & Tip of mastoid process. Mean distance between left Asterion & tip of left mastoid process (AM) was 5.36+/-0.43cm.

[Figure 3] shows the parameters on Right side of posterolateral cranium. Longest distance was found between Asterion & Inion on both the sides. Mean distance between Right Asterion & Right Zygomatic Arch (AZ) was 5.57+/-0.34cm. While, Asterion & Tip of mastoid process was found at the shorter distance from each other on both the sides. Mean distance between right Asterion & tip of right mastoid process (AM) was 5.32+/-0.37cm. Mean distance between right Asterion & Inion (AI) was 6.98+/-0.43cm.

Figure 3: Average Measurement on Right Side Cranium

As shown in [Figure 4], Distance between the Asterion & other parameters on Right & Left sides of posterolateral cranium was more or less equal.

Table 1: Measurements on posterolateral craniums

<table>
<thead>
<tr>
<th></th>
<th>Right side cranium</th>
<th>Left side cranium</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance between Asterion & Zygomatic Arch (AZ)</td>
<td>55.7+/- 3.4 mm</td>
<td>57.3+/- 2.7mm</td>
<td>0.0064</td>
</tr>
<tr>
<td>Distance between Asterion & Tip of mastoid process (AM)</td>
<td>53.2+/- 3.7mm</td>
<td>53.6+/- 4.3mm</td>
<td>0.63</td>
</tr>
<tr>
<td>Distance between Asterion & Inion (AI)</td>
<td>69.8+/- 4.3mm</td>
<td>69.3+/- 5.5mm</td>
<td>0.35</td>
</tr>
</tbody>
</table>

DISCUSSION

Present study was conducted to determine various parameters for localisation of Asterion. In Neurosurgery, the appropriate point at the beginning of craniotomy is desirable to approach into skull cavity. The Asterion is used as suitable landmark in the posterolateral region, such as the retrosigmoid approach for tumor resection in the cerebellopontine angle and the suprapetrous approach for petrous lesions. Nowadays, large craniotomies can be replaced by microsurgical innovation technique, as the key-hole craniotomy to provide shorter surgery time and avoid severe complications in neurosurgery. Various surface landmarks present on skull is used to localise the Asterion. These parameters differ in different population. Hence, this study has been undertaken to get the distance between Asterion & zygomatic arch (AZ), Asterion & Mastoid process (AM), Asterion & Inion (AI) & Underlying structures are crucially correlated with surface landmarks.

If wormian bone is found at the location of Asterion, it may affect the different measurements from the Asterion & can cause confusion in the location of Asterion. Hence, Craniums with the presence of Wormian bones were excluded from taking the measurements for the localisation of Asterion. It can be classified into type I (with Wormian bones) & type II (without Wormian bones). In present study, it was observed that 15% of the Asterion were type I and type II were found in 85% of the craniums. This finding complies with the study done by Lucena et al (2019), where the type I Asterion was 31.67 percent and type II Asterion was 68.33 percent. Type I and type II were found in 85% of the craniums. Against the venous sinus, Type I was 90.9% and Type II was 6.1%.

Table 2: Comparison of the results of related studies regarding Asterion

<table>
<thead>
<tr>
<th>Study done by</th>
<th>Asterion (A)& tip of mastoid process (M)</th>
<th>Asterion(A)& post end of zygomatic arch(Z)</th>
<th>Asterion(A)& Inion (I)-AI</th>
<th>Type of Asterion observed</th>
<th>Relation of Asterion with deeper structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present study</td>
<td>Rt- 5.32 +/- 0.37 Lt- 5.36 +/- 0.43</td>
<td>Rt- 5.57 +/- 0.34 Lt- 5.72 +/- 0.27</td>
<td>Rt- 6.98 +/- 0.43 Lt- 6.93 +/- 0.34</td>
<td>Type I- 9 Posterolateral Cranium (15%) Type II- 51 Posterolateral cranium (85%)</td>
<td>Against the venous sinus Above the sinuses Below the sinuses</td>
</tr>
<tr>
<td>PM Mwachaka et al [8]</td>
<td>Rt- 47.89 +/- 3.72 mm Lt- 47.62 +/- 2.87 mm</td>
<td>Rt- 58.85 +/- 2.50 mm and Lt- 58.44 +/- 2.12 mm</td>
<td>NA</td>
<td>NA</td>
<td>72</td>
</tr>
<tr>
<td>Srisaparajkul et al (2000) [9]</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>66.3%</td>
</tr>
<tr>
<td>Duanthongpn et al. (2006) [10]</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>90.9%</td>
</tr>
<tr>
<td>Wirakiat et al [11]</td>
<td>51.1 ± 5.3 mm.</td>
<td>58.3 ± 6.1 mm</td>
<td>62.9 ± 6.0 mm</td>
<td>NA</td>
<td>65%</td>
</tr>
<tr>
<td>Çalışkan S et al [15]</td>
<td>Rt- 5.02±0.58 mm Lt-4.87±0.56 mm</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Lucena et al (2017) [7]</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>Type I 31.67% Type II 68.33%</td>
</tr>
<tr>
<td>Akkaşoğlu et al [12]</td>
<td>Rt- 45.01± 6.04mm Lt- 43.65 ± 6.75 mm</td>
<td>R-43.95± 7.02 mm L- 43.97 ± 7.37 mm</td>
<td>R- 54.75 ±5.57mm L- 62.59 ± 8.83 mm</td>
<td>NA</td>
<td>84%</td>
</tr>
<tr>
<td>Sachan et al [14]</td>
<td>Rt 48.77±2.23mm Lt 47.45±2.62</td>
<td>Rt 56.15±2.4 mm Lt 57.48±2.7 mm</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

International Journal of Academic Medicine and Pharmacy (www.academicmed.org)
ISSN (O): 2687-5365; ISSN (P): 2753-6556

1592
In a study performed by Sripairojkul & Adultrakoon, in Thailand (2000), the Asterion was observed in 66.3 % cases against the venous sinuses, 16.3 % infratentorial, and 17.4 % supratentorial.\[9\]

In contrast, in the study by Duanthongpon et al. (2016) the Asterion was against the venous sinuses in 90.9 % cases, located at the infratentorial position in 3 %, and at supratentorial position in 6.1 % cases.\[10\]

In the study by Hulya Ucerler and Figen Govsa in (2006), the position of the Asterion has been found to be located superficial to the transverse-sigmoid sinus junction in 87% of all samples, inferior to the transverse-sigmoid sinus junction in 11% and superior to the transverse-sigmoid sinus junction in 2%.\[11\]

According to, Wirakiat et al, most common location related to the Asterion was the dural venous sinuses on 65 % of tested sides, followed by infratentorial dura and supratentorial dura (25 % and 10 %) respectively.\[11\]

In the study done by Akkaşoğlu et al, 84% of the cases Asterion was seen at the junction of transverse and sigmoid sinuses. Asterion was below the junction of transverse and sigmoid sinuses in 12% of the cases. In 4% of the cases Asterion was above the junction of transverse and sigmoid sinuses.\[12\]

In Present study, performed on North Indian dry skulls, most of the Asterion (70%) are at the junction of transverse & sigmoid sinuses. Thus, it can be concluded that Asterion is most commonly located at the junction of Transverse & Sigmoid sinuses.

The transverse–sigmoid sinus junction is the most common position of the Asterion, the burr hole made directly on the Asterion, can cause injury and bleeding from the sinus.\[13\]

The optimal drilling position for a retrosigmoid approach was previously suggested to be at the halfway between the mastoid apex and the Asterion.\[13\] Asterion is localised using different surface landmarks present surrounding the Asterion. Thus, in present study, surrounding surface landmarks in the posterolateral cranial are measured.

P M Mwachaka et al measured Distance between the Asterion and the tip of mastoid process as 47.89 +/- 3.72 mm on the right side and 47.62 +/- 2.87 mm on the left side.\[8\]
While, Wirakiat, w.; kaewborisutsakul, a. & kankuan, k. W studied the mean distance between Asterion and Mastoid tip as 51.1 ± 5.3 mm.\[11\]

Akkaşoğlu et al found Distance between Asterion and mastoid process as 43.65 ± 6.75 mm on the left side and 45.01± 6.04mm on the right side.\[13\]
Sachin et al studied posterolateral cranium in Andman & Nikobar region & found the distance between Asterion & Inion as 62.9 ± 6.0mm.\[11\]

While, in present study, Distance between Asterion & Inion (AI) were 69.8+/- 4.3mm on right and 69.3+/- 3.5mm on left side.

The Asterion is not a reliable point for posterolateral route and a burr hole 2 cm below the Asterion is better alternative according to Urculo E et al.\[16\]

According to Çorpan et al., surgical approaches through the 10 mm superior or inferior to the Asterion have a significant risk of damaging the sigmoid and transverse sinuses.\[17\]

Hence, these parameters can be of some help in finding out the safe area using Asterion as a key point in the posterolateral cranium.

CONCLUSION

The identification of the safe area in the posterolateral cranium is crucial for the safe and effective performance of surgical procedures. The landmarks and structures present in this region provide valuable information for surgical navigation and play a critical role in the localization of the safe area. Therefore, our findings may be of some help to locate suitable point for craniotomy by recognising the variation of Asterion type and its location in terms of distance from other skull landmarks and beneath structures.

REFERENCES

3. Day DJ, Kellogg JX, Tschabitscher M et al. Surface and superficial surgical anatomy of the posterolateral cranial base:

17. De Paiva LAS, Segre M. Sexing the human skull through the mastoid process. Revista do Hospital das Clinicas 2003;58:15–20