INTRODUCTION

Acute retinal necrosis (ARN) is a distinct ocular inflammatory condition with a constellation of clinical features and vision-threatening complications. Acute retinal necrosis is a visually devastating disease. Prompt diagnosis and a good therapeutic approach are a must for better visual recovery. Akira Urayama et al. [1] in the year 1971, reported six cases of a unique form of uveitis that had not been described before. They named this clinical entity "Kirisawa Uveitis" after their professor, Nagamori Kirisawa. The report was the first documentation of ARN syndrome. The first international literature on acute retinal necrosis was by Willerson et al. [2] in the American Journal of Ophthalmology in 1977. Young and Bird coined bilateral acute retinal necrosis (BARN) [3] in 1978. Culbertson et al. [4] 1982 demonstrated the presence of the herpes virus in an enucleated eye of an ARN patient by electron microscopy in 1986. Varicella zoster was cultured from the herpes virus in an enucleated eye of an ARN patient. In 1994 American uveitis society proposed diagnostic criteria for ARN syndrome. [5]

Standard Diagnostic Criteria for Acute Retinal Necrosis. [8]

The American uveitis society recommended diagnostic criteria for all clinical and laboratory studies in acute retinal necrosis in 1994.
1. Focal, well-demarcated areas of retinal necrosis located in the peripheral retina (outside the major temporal vascular arcade).
2. Rapid, circumferential progression of necrosis (if antiviral therapy has not been administered)
3. Presence of evidence of occlusive vasculopathy
4. Prominent inflammatory reaction in the vitreous and anterior chamber
Characteristics that support but are not required for diagnosis are 1. optic atrophy, 2. scleritis 3. pain. ARN was first reported in Japan, now reported throughout the world. ARN affect both genders but has slight male preponderance. Acute retinal necrosis affects all age groups and a bimodal age distribution peaks at the 16-25 and 45-65 age groups. Bilateral involvement occurs in one-third of patients; usually, fellow eye involvement occurs between 1-6 weeks. A delay of several weeks to years had been reported to occur in the fellow eye. The main etiological factor for acute retinal necrosis is the herpes family virus, of which alpha herpes virus Herpes simplex virus 1 (HSV1), Herpes simplex virus 2 (HSV2), and Varicella zoster (VZV) cause ARN most commonly. Rarely are Epstein-Barr virus (EBV) and Cytomegalovirus (CMV) implicated in causing ARN. ARN may result from a dormant HSV1, HSV2 or VZV viral reactivation in the retina. Since the causative viruses are neurotropic, the probable route for reaching the retina is to travel down the optic nerve. Alternatively, one of the other cranial nerves supplying the eye may transport the virus. The exact etiology of this reactivation remains elusive. However, an Immuno genetic predisposition to the disease is likely. HSV1, HSV2 and VZV were found in ocular samples in high copy numbers suggesting active viral replication in patients with ARN. Evidence suggests that primary viral infection, in addition to a secondary reactivation, can cause ARN. In such cases, the virus can reach through a haematogenous route, with infected lymphocytes enabling the virus to cross the blood-retinal barrier.

Treatment
In the years following the initial break linking the herpes virus to ARN, antiviral agents became the main treatment stay along with adjutants like oral and topical corticosteroids, anticoagulants and cycloplegics. The standard of antiviral therapy is intravenous (iv) administration of acyclovir. Newer oral antiviral agents are emerging as alternatives to high-dose intravenous acyclovir, avoiding the need for invasive and inpatient treatment. Combined oral and intravitreal antiviral therapy is gaining popularity. Drug resistance is uncommon and also difficult to identify. Antiviral drugs have few side effects, but special attention needs to be paid to patients with underlying renal disease in pregnant and immunocompromised patients.

The exact duration of treatment is still not conclusive. Newer methods, such as quantitative assays for viral DNA, may provide additional information and guide treatment in future.[6,7]

Aim of the Study
To compare the treatment outcomes and long-term complications in ARN patients treated with only oral and combined antiviral therapy.

Objectives
1. Find the rate of occurrence of retinal detachment in Acute retinal necrosis patients treated with oral and combined antiviral therapy.
2. To study the treatment outcome regarding visual acuity in Acute retinal necrosis patients treated with oral and combined antiviral therapy.

MATERIALS AND METHODS
Prospective, observation, hospital-based case series study method. Patient recruitment started after the institute review board (Ethical committee) approved the study. Informed consent was obtained from all participants of the study. The patient was recruited into the study if they had clinical features as described in standard diagnostic criteria by the American Uveitis Society 1994.[5] A detailed history was obtained from the patient regarding his ocular complaints, mainly his symptoms at presentation and history regarding any viral infection suffered by the patient. If present, the type of viral infection was documented. Associated systemic illness was documented, particularly AIDS, as patients with AIDS are grouped as immunocompromised otherwise, patients are grouped as immunocompetent.

A data sheet was prepared to record the patient's demographic data 1. Age, 2. Gender, and 3. laterality of the eye involved. Patients diagnosed with Acute retinal necrosis clinically, if needed, are investigated with USG B scan to rule out retinal detachment and ocular coherence tomography (OCT) to look for any macular involvement. A systemic investigation like Hemoglobin, total blood count, differential blood count, erythrocyte sedimentation rate, platelet count, and urine analysis was done. ELISA for Human immunodeficiency virus was done to find the patient's immune status with the patient's consent if needed. Serial Fundus photography was taken to document the improvement of the disease after treatment.

Treatment
Patients were given oral antiviral therapy as a sole or combined antiviral therapy at the treating physician's discretion. In Oral antiviral therapy (Group1), T.Valacyclovir 1000mg TDS/day was given for 8 to 12 weeks. Combined antiviral therapy (Group 2) includes a combination of oral antiviral, intravitreal antiviral, intravenous antiviral, and intravitreal antiviral. Intravitreal antiviral was given in Gancyclovir 2000µg in 0.1ml and intravenous antiviral as Inj. Acyclovir 5-10mg/kg TDS/day for 55 days. All patients are treated with cycloplegic and T.Prednisolone 1mg/kg per day in titrated dose as per the response.

Complications And Its Management
The most common complication in Acute retinal necrosis is RETINAL DETACHMENT. The time
gap of occurrence of retinal detachment from the onset of acute retinal necrosis was documented. **Follow-Up:** All patients followed up for six months. Visual acuity, intraocular pressure, and a complete ocular examination were carried out during all follow-up visits complication, if any, was documented and treated appropriately. At the end of six months, the final best corrected visual acuity was recorded.

RESULTS

21 eyes of 18 patients studied, 11 (61.11%) were males, and seven (38.89%) were females. Bilateral involvement was seen in 3 patients (14.28%).

Treatment

15 eyes were given oral valacyclovir as the sole antiviral (Group 1), and six eyes were given combined antiviral therapy (Group 2).

- Group 1 (oral therapy) = 71.43%
- Group 2 (combined therapy) = 28.57%

Progression to Retinal Detachment

![Occurrence of RD](image)

In oral therapy, four eyes (26.67%) out of 15 eyes progressed to retinal detachment, and three eyes out of 6 (50%) progressed to retinal detachment in a combined therapy group.

The P value 0.354 (>0.05) says there is no association between the groups in the Progression to RD. A total of 7 (33.33%) patients progressed to retinal detachment on the whole.

Vision Analysis

In oral therapy and combined therapy, 3 eyes improved, 2 eyes were not detected, and 4 eyes improved.

![Vision Analysis](image)
The P values 0.02 and 0.04 are less than 0.05, meaning there is a statistically significant difference between the initial vision and final vision of the two groups.

The P value 0.033 <0.05 says a statistically significant difference exists between the initial and final visions of the ARN oral therapy group.

The P value 0.07>0.05 says no statistically significant difference exists between the combined therapy group's initial and final visions.

DISCUSSION

Treatment

In our study, patients have treated with oral valacyclovir 1000mg per day (given for approximately 8 to 12 weeks) or treated with intravenous acyclovir 10mg/kg 3 times per day for five days and followed with oral valacyclovir 1000mg 3 times per day. In addition to intravenous and oral acyclovir, a few patients were given intravitreal Ganciclovir 2000μg in 0.1ml. Patients treated with oral valacyclovir as the sole antiviral administered are grouped as oral therapy patients. Patients treated with two or more routes of antiviral are grouped as combined therapy groups. In our study, 15 out of 21 eyes (71.43%) were treated with oral therapy, and 28.57% of an eye (6 eyes) were treated with combined therapy. All patients, besides antiviral, received oral and topical prednisolone and cycloplegic. The treatment was administered at the treating ophthalmologist's discretion.

Emerson et al., in the year 2006, reported about treating ARN with oral valacyclovir/famciclovir as the sole antiviral.

In our study, no patients underwent prophylactic lasers.

Retinal Detachment

The necrosis, over time, would progress to retinal detachment. The detachment may be Exudative, rhegmatogenous or a combination of above mentioned two factors. Our study reports the overall occurrence of retinal detachment to be 33.33% (7 out of 21 eyes suffered RD). Compared to the literature collected, retinal detachment was lower in our study. In the analysis of patients who suffered retinal detachment, it was found that oral therapy patients progressed to retinal detachment less (26.67%) than combined therapy patients (50%). It was also found a no statistical significance exists between both groups (P=0.354)

Vision Analysis

Acute retinal necrosis is a potentially blinding disease. Protection of vision is the primary aim of the treatment of the disease. The patient's vision was monitored during all visits. Best corrected visual acuity is recorded by Snellen chart and converted to LogMar scale for statistical analysis. Patient vision is said to deteriorate if his final vision is less than his vision at presentation, and vision is said not to deteriorate if the patient's final vision at the end of six months follow-up remains the same or improved compared to his initial vision at presentation.

The overall visual acuity of all eyes studied had improved significantly at the end of six months of treatment. Our study found that in 23 eyes (79.39%), the vision had not deteriorated, and in 6 eyes (28.61%), the vision had deteriorated.

Our study found the mean initial visual acuity in the oral antiviral therapy group was 0.40 LogMAR±0.33(1SD), and the mean final visual acuity was 0.28±0.27 LogMar. A statistically significant (P=0.033) improvement in visual acuity between initial and final vision in oral therapy. Cochrane et al. [11] reported that the final mean visual acuity of patients treated with oral antiviral was only 0.89±0.79 LogMar.

No statistically significant (P=0.0.07) improvement in visual acuity was noted between initial (mean= 1.43LogMar±1.14 (1SD)) and final visual acuity (mean 1.10±0.33LogMar) in combined antiviral therapy group. Flaxel et al. [12] reported in combined antiviral therapy, mean visual acuity improved from 1.01±0.61 LogMar to 0.59±0.51LogMar. A statistically significant (P=0.02) exists between mean initial visual acuity between oral and combined therapy. Mean initial visual acuity was better in an oral group than combined group.

Limitations in our Study

- Acute retina necrosis is a rare disease, the study sample was small, and the follow-up period was short. If the follow-up period was extended, more complications may be found.
- Sole oral antiviral therapy was started on patients with indolent acute retinal necrosis, and combined therapy was started in more severe cases. This results in differences in both initial and final visual acuity.

<table>
<thead>
<tr>
<th>Table 1: Progression to RD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>ARN Oral Therapy</td>
</tr>
<tr>
<td>Combined Therapy</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2: Visual acuity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visual Acuity</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Initial Vision</td>
</tr>
<tr>
<td>Final Vision</td>
</tr>
<tr>
<td>P value @</td>
</tr>
</tbody>
</table>

International Journal of Academic Medicine and Pharmacy (www.academicmed.org) 792

ISSN (O): 2687-5365; ISSN (P): 2753-6556
CONCLUSION

Acute retinal necrosis is a rare but potentially blinding disease. Polymerase chain reaction on ocular fluids helps to identify viral DNA, and appropriate treatment can be instituted. Prompt diagnosis and a good therapeutic approach are a must for better visual recovery. Vision-threatening complications like retinal detachment can be prevented with reasonable monitoring of ARN patients and prompt treatment. Oral antiviral and intravitreal antiviral are increasingly used in the treatment of ARN. Primary treatment with oral antiviral for indolent ARN is an effective alternative to combined therapy as the latter is invasive and requires hospitalization.

REFERENCES