FAHR'S DISEASE WITH EPILEPSY IN EASTERN INDIAN REGION POPULATION: A CASE REPORT STUDY

Ravi Ranjan Kumar Raman1, Md Shahid1, Prasuram Yugal2

1Senior Resident, Department of General Medicine, GMCH, Bettiah, West Champaran, Bihar, India
2Professor and Head of Department, General Medicine, GMCH, Bettiah, West Champaran, Bihar, India.

Abstract
Fahr's disease, first described by Karl Theodor Fahr in 1930, refers to sporadic or familial idiopathic basal ganglia calcification that is associated with many neurological and psychiatric abnormalities, but may also be secondary to other diseases. Most cases present with extrapyramidal symptoms. But here we describe a case of Fahr's disease, who presented with extrapyramidal symptoms with generalized tonic clonic seizures.

INTRODUCTION
Fahr’s disease or Fahr’s syndrome is a rare inherited or sporadic neurological disorder with a prevalence of <1/1,000,000 and characterized by abnormal deposition of calcium in areas of the brain that control movements including basal ganglia, thalamus, dentate nucleus, cerebralcortex, cerebellum, subcortical white matter, and hippocampus.[1,2] It was first described by German neurologist Karl Theodor Fahr in 1930.[3] Most cases present with extra pyramidal symptoms initially. Additionally, they may present with cerebellar dysfunction, speech difficulty, dementia and neuropsychiatric symptoms. We describe a case of Fahr’s disease, who presented with extrapyramidal symptoms with generalized tonic clonic seizures and behavioral abnormalities.

CASE REPORT
The study was conducted at Government Medical College &Hospital Bettiah West Champaran, Bihar, India, from 20th August 2021 to 15th December, 2021(4 months), were collected prospectively. A 17-year-old male presented with 2 weeks history of sudden involuntary movement involving both side of his body and multiple episodes of generalized tonic clonic seizures (GTCS). It was characterized by involuntary, unsustained, irregular choreoathetoid.

Received: 19/05/2023
Received in revised form: 22/06/2023
Accepted: 05/07/2023

Keywords: Fahrs disease, epilepsy, Eastern Indian region.

Corresponding Author:
Dr. Ravi Ranjan Kumar Raman,
Email: ravinmch@gmail.com
DOI: 10.47009/jamp.2023.5.4.108
Source of Support: Nil,
Conflict of Interest: None declared
Int J Acad Med Pharm
2023; 5(4): 534-536

The movement disappeared with sleep. He had no precipitating factors for GTCS and had mild dysphagia and slurring of speech. He had no cognitive or psychiatric symptoms. No history suggestive of cerebrovascular disease or similar symptoms of movement in the past was recorded. There was also no family history of movement disorder. His past medical history was not significant. Neurological examination revealed his normal neurocognitive assessment but had ill sustained choreoathetoid movements involving all the body. Other aspects of the neurological examination were normal. Admission blood pressure was 130/90 mmHg, and the abdominal and chest examinations were unremarkable. A diagnosis of epileptic encephalopathy involving the basal ganglia was made initially. The result of fasting plasma glucose was 96 mg/dL, while that of serum calcium was 9.5 mg/dL (8.8-10.2), albumin 3.8 g/dL, phosphate 5 mg/dL (2.5-4.9) and parathyroid hormone 31.5 pg/mL (15-65 pg/mL) were all normal. Brain CT-scan revealed symmetrical non enhancing calcifications in both cerebellar hemispheres, both basal ganglia and in both parietal regions [Figure 1].
Fahr's disease (FD) is characterized by sporadic or familiar idiopathic calcification of the basal ganglia, dentate nuclei of the cerebellum, and centrum semiovale.[1] People with FD frequently present with movement disorders such as rigidity, hypokinesia, tremor, choreoathetosis, and ataxia and with frontal subcortical and cortical patterns of behavioral disturbances such as psychosis mood disorders, and seizures or stroke-like events.[2] Etiology of this syndrome does not identify a specific agent but associations with a number of conditions have been noted; most common of which are endocrine disorders, mitochondrial myopathies, dermatological abnormalities and infectious diseases.[3]

Availability of brain CT-scan has increased the number of case reports of intracranial calcification, and brain CT scan is considered more sensitive than magnetic resonance imaging for finding calcified deposits in Fahr syndrome. Clinical and pathological criteria have been set forth for defining Fahr syndrome.[6,7] The clinical criteria require bilateral calcification of the basal ganglia with neuropsychiatric and/or extrapyramidal disorders associated with normal calcium and phosphate metabolism; other criteria stipulate seizures, rigidity and dementia with characteristic calcification of the basal ganglia. Our case fulfilled the diagnostic criteria, having presented with movement disorder associated with bilateral basal ganglia calcification. Parathyroid hormone abnormality appears to be the most common definable etiology for calcification of bilateral subcortical nuclei and white matter, but the mechanism of selective deposition of calcium and other trace element in the presence of normal serum parathyroid hormone, serum and cerebrospinal fluid (CSF) calcium and phosphate is not yet known.[5]

The most common manifestation of FD is movement disorders (55%), of which accounts for over half of all movement disorders while hyperkinetic movement disorders (chorea, tremor, dystonia, athetosis and orofacial dyskinesia) account for the rest. Our index case had choreoathetoid movements. Cognitive impairment is the second most common manifestation, followed by cerebellar impairments and speech disorders. Overlap of neurologic manifestation such as hypokinetic movement disorder associated with cognitive impairment and cerebellar signs are often seen.[5] The course of FD is progressive as calcium deposition generally begins in the third decade of life, with neurological deterioration two decades later.[8] FD may also occur in young adolescents and young adults, as in our case. Although calcification can involve other structures, globus pallidus is by far the most common site, with lateral pallidus been more affected than the medial.[9] The exact pathological process initiating the calcifying changes is not known, it may reflect slowly progressive metabolic or inflammatory processes in the brain, which subsequently calcifies and is probably responsible for the neurologic deficit observed. Several approaches based on diverse biological theories and small scale clinical experiences have been proposed for management of FD. Pharmacological treatment should be used to improve anxiety, depression, and obsessive-compulsive disorder and to alleviate dystonia. Seizures and movement disorders in Fahr’s syndrome which are related to the parathyroid disorder can be resolved with the correction of phosphate and calcium levels for e.g. treatment with alpha hydroxy vitamin D3 and corticosteroids reversed neurological deficits.[4] Clonazepam and atypical antipsychotic also offer a distinct advantage in treating patients with Fahr’s syndrome.[10] Fahr's disease could manifest with hyperkinetic movement disorder including choreiform movements and seizure disorders. It may also occur in adolescents and young adults. High index of suspicion can help in early diagnosis and management of Fahr disease especially associated with hypoparathyroidism.

CONCLUSION

In this case report study, we presented the clinical findings of a 17-year-old male from the Eastern Indian region with Fahr's disease accompanied by epilepsy. The patient presented with sudden involuntary movements involving both sides of his body and multiple episodes of generalized tonic-clonic seizures. The involuntary movements were characterized by irregular choreoathetoid movements that disappeared during sleep. Upon neurological examination, the patient showed normal neurocognitive function but exhibited sustained choreoathetoid movements throughout his...
body. Other aspects of the neurological examination were unremarkable. Diagnostic imaging, specifically a brain CT-scan, revealed symmetrical non-enhancing calcifications in the cerebellar hemispheres, basal ganglia, and parietal regions. A diagnosis of Fahr's disease with generalized tonic-clonic seizures and choreoathetoid movement disorder was made. The patient was initially treated with haloperidol 5 mg daily and sodium valproate, resulting in the control of seizures and a remarkable improvement in the choreoathetoid movements. The patient was discharged from the hospital after 14 days of hospitalization and is currently being followed-up in the medical outpatient unit.

This case highlights the importance of considering Fahr's disease as a differential diagnosis in patients presenting with involuntary movements and seizures. Early diagnosis and appropriate management can lead to symptom control and improved patient outcomes. Further research and studies are needed to better understand the pathogenesis, clinical presentation, and treatment options for Fahr's disease in the Eastern Indian region population.

REFERENCES