INTRODUCTION

Cataract is the most common cause of blindness worldwide, and surgical removal is the most common method used to treat it.[1] Cataract surgery has improved in recent years, but postoperative complications still occur with the most common complication being posterior capsular opacification (PCO). The usual visual complications secondary to posterior capsule opacification (PCO) are decreased visual acuity, impaired contrast sensitivity, glare disability, and monocular diplopia, which often requires further treatment.[2,3]

Postoperative capsular opacification is mainly caused by migration and proliferation of residual lens epithelial cells (LECs) after cataract surgery and their differentiation into fibroblastic and lens fiber-like cells. It occurs more frequently and is more severe in young patients than in old, as they exhibit increased numbers of LECs and greater mitotic activity. Currently, the standard treatment for PCO is Nd:YAG laser posterior capsulotomy, which has a success rate of more than 95%.[4] Laser capsulotomy uses a quick-pulsed Nd:YAG laser to apply a series of focal ablations in the posterior capsule and create a small circular opening in the visual axis.[5] Although safe and effective, the reported complications of Nd:YAG laser posterior capsulotomy include retinal detachment,[6-8] cystoid macular edema (CME),[6,9] and rise in IOP.[10,11]

This procedure also causes a shift in the position of the implant,[12,13] which can cause a change in the effective power of the lens in the eye and potentially alter the refraction of the patient. This might necessitate further refractive surgery for the patient to ensure optimal vision. A number of Nd:YAG laser capsulotomy shapes and sizes may be utilized. Cruciate and circular shapes are most commonly performed with a wide range of opening sizes (3-6 mm). Specific capsulotomy shapes and sizes confer particular advantages and disadvantages.[14,15] The influence that cataract has on automated perimetry has been well studied.[16-18] Concerning PCO however, some studies have been undertaken by analyzing its effects on visual acuity, contrast sensitivity, and glare, as well as on the improvement of these parameters after Nd: YAG capsulotomy.[2-3,20-22] and also the influence of pseudophakia.
without PCO on kinetic[23-26] or static perimetry[27,28]

In this study, we evaluated the effect of Nd:YAG capsulotomy size on visual outcomes and refraction of patients affected by PCO before and after Nd:YAG Capsulotomy.

MATERIALS AND METHODS

This study was performed according to the tenets of the Declaration of Helsinki and written informed consent was obtained from the patients before the intervention. The study was a prospective, descriptive study conducted in a tertiary eye centre in North India between Jan 2019 to Jan 2020. A total of 91 pseudophakic eyes of 78 patients with PCO with BCVA ≤6/12 were included in the study. Only those cases that had undergone uncomplicated manual small incision cataract surgery or phacoemulsification with posterior chamber intraocular lens (PCIOIL) in the bag implantation surgery were included in the study. The surgeries were performed by multiple surgeons. Exclusion criteria included complications during cataract surgery or during the postoperative period. The patients with following conditions were excluded from the study: Diagnosed cases of glaucoma or steroid responders, those with corneal opacities, retinal diseases, uveitis, optic neuropathy, and those who had undergone any other ophthalmic surgeries prior to Nd:YAG laser posterior Capsulotomy treatment.

All the patients underwent Nd:YAG laser Capsulotomy from January 1, 2019 to December 31, 2020. They were examined preoperatively and at 1 month after capsulotomy. Patients were divided into two groups according to the size of the capsulotomy (Group 1 less than or equal to 3mm and Group 2 more than 3 mm). There were 50 eyes in Group 1 and 41 eyes in Group 2. Multiple surgeons performed the capsulotomy, though each capsulotomy was performed by a single surgeon in a single session with a Nd:YAG laser, Zeiss Visulas III laser (Carl Zeiss Meditec Inc, Dublin, California, USA). All patients underwent a complete ocular examination on all visits, including BCVA, refraction (autorefraction followed by subjective refraction), slit lamp biomicroscopy, IOP measurement. The spherical equivalent (SE) values were calculated as the sum of the sphere plus half the cylindrical power.

During the next visit, which was scheduled 4 weeks after capsulotomy, an identical complete ophthalmic examination was performed.

Preoperative and postoperative SE and BCVA were compared within groups and between groups prior to and at 1 month following capsulotomy. All statistical analyses were performed using commercially available statistical software (SPSS version 22, SPSS, Inc., Chicago, IL). Data were compared using the Chi-Square test, Wilcoxon Signed Ranks test, Mann-Whitney U test, or Kruger Wallis test as appropriate. P values of less than 0.05 were considered statistically significant.

RESULTS

A total of 91 eyes of 78 patients were included in the study. There were 44 males (56%) and 34 female (44%) patients included in the study. Mean age of the patients was 55.87 ± 10.24 years (45-80 years). Forty-five patients had unilateral PCO (57.7%) and 23 patients had bilateral PCO (42.3%). The mean interval between surgery and Nd:YAG laser capsulotomy was 30.19 ± 8.08 months (12-40).

No significant difference in the interval between surgery and Nd:YAG laser capsulotomy was observed between groups (p=0.97). No statistically significant differences in age or gender were observed between groups (p=0.254 and p=0.49, respectively).

The mean pre-procedural SE was -0.81 ± 0.76 diopter (0.00-2.00) in Group 1, -0.44 ± 0.31 diopter (0.00-1.00) in Group 2. The mean pre-procedural SE was significantly higher (more myopic) in Group 1 (p=0.021). The mean post-procedural SE was -0.92 ± 0.74 diopter (0.00).

The mean pre-procedural BCVA was 0.64 ± 0.32 logMAR units (0.20-0.90) in Group 1 and 0.68 ± 0.22 logMAR units (0.20-0.90) in Group 2. There was no statistical difference between groups (p=0.54). The mean post-procedural BCVA was 0.54 ± 0.32 logMAR units (0.20-0.90) in Group 1 and 0.56 ± 0.30 logMAR units (0.20-0.90) in Group 2. There was no statistically significant difference between the groups (p=0.154). No significant change in SE following capsulotomy was observed in any group (p=0.81).

![Figure 1: Mean pre-procedural SE](image1.png)

2.00) in Group 1, -0.26 ± 0.42 diopter (0.00-1.00) in Group 2. The mean post-procedural SE was significantly higher (more myopic) in Group 1 (p=0.015). No significant change in SE following capsulotomy was observed in any group (p=0.81).

![Figure 2: Mean post-procedural SE](image2.png)

The mean pre-procedural BCVA was 0.64 ± 0.32 logMAR units (0.20-0.90) in Group 1 and 0.68 ± 0.22 logMAR units (0.20-0.90) in Group 2. There was no statistical difference between groups (p=0.54). The mean post-procedural BCVA was
0.05 \pm 0.07 \logMAR \text{ units (0.00-0.20) in Group 1 and 0.06 \pm 0.03 \logMAR \text{ units (0.00-0.10) in Group 2. There was no statistical differences between groups (p=0.112). BCVA significantly improved in both groups following capsulotomy (P<0.01).}

![Mean pre-procedure BCVA](image1.png)

Figure 3: Mean pre-procedure BCVA

![Mean post-procedure BCVA](image2.png)

Figure 4: Mean post-procedure BCVA

No retinal complications (such as peripheral degenerations, retinal tears or retinal detachments) were found neither before nor after Nd: YAG was applied in both the groups.

DISCUSSION

The main goal of Nd:YAG laser capsulotomy is to increase visual acuity, however improving contrast sensitivity and decreasing disability due to glare are also important.[30,39,30] Visual acuity through smaller capsulotomy openings is limited by diffraction and results in light passing through the unopened region of the capsule being scattered causing glare and decreasing contrast sensitivity. Capsulotomy opening should therefore be equal to, or larger than, the size of pupil in scotopic conditions.[30,31] However, capsulotomy openings should be large enough to ensure good visualisation of the peripheral fundus, particularly in patients with retinal disease.

On the other hand, the complications associated with larger capsulotomy openings are increase risk of cystoid macular edema, vitreous prolapse, and retinal detachment.[32,33] or posterior IOL dislocation leading to hyperopia.[13] In addition, a higher amount of energy is required that may increase the risk of retinal detachment.[34] Refractive changes and visual acuity are usually not affected by the size and shape of capsulotomy.[35,36] However, floaters are more frequently reported, and the amount of energy used is higher, in circular shape and large size (>3mm) capsulotomies.[15]

In our study we did not observe any complications related to Nd:YAG laser capsulotomy. Our study found no significant changes in refraction, visual acuity, or IOP in any groups following Nd:YAG capsulotomy. However, the amount of energy used, was significantly higher in Group 2 (large size circular shape capsulotomy). More energy and thus more laser firings are required to form larger capsulotomies resulting in more floating bodies in the anterior vitreous. Additionally, the amount of energy used and floater complaints were significantly lower in Group 1 (small size capsulotomy).

CONCLUSION

In conclusion, capsulotomy with an opening of 3 mm or less provides the greatest improvement in visual function with minimal complications.

REFERENCES

