INTRODUCTION

India has the highest number of diabetic subjects in the world, garnering the dubious title of "diabetes capital of the world."[1] The large majority of diabetic patients fall into one of two categories: type 1 diabetes mellitus, which is attributed to an absolute or near-absolute insulin deficiency or type 2 diabetes mellitus, which is characterized by insulin resistance and insufficient compensatory insulin secretion.[2] In diabetes, several etiological processes contribute to hyperglycemia, which includes reduced insulin secretion, decreased glucose utilization, and increased glucose production. In a patient with type 1 diabetes, hyperglycemia is caused by genetic, environmental, and immunologic factors, which results in pancreatic beta cell death and insulin deficiency.[3] The metabolic dysregulation causes secondary pathophysiological changes in multiple organ systems. Glucose autooxidation and nonenzymatic glycation of macromolecules produce reactive hydroxyl radicals, resulting in increased oxidative stress. DNA damage caused by oxidative stress appears to have a role in the etiology of type 1 diabetes and its consequences.[4] Sister chromatid exchanges were first observed by McClintock in 1938 in ring chromosomes of maize. Sister Chromatid Exchange (SCE) analysis is a great sensitive method for assessing DNA damage quantitatively and qualitatively.[5] SCE represents the DNA replication products exchange at seemingly homologous loci. These exchanges are presumed to be because of DNA breakage and reunion.[6]

Aim

To evaluate the DNA damage in type I diabetic patients using sister chromatid exchange analysis.

MATERIALS AND METHODS

Thirty types I diabetic patients with C peptide levels less than 0.5ng/ml from the Out Patient Department of Medicine and the Special Clinics of JIPMER Hospital, Pondicherry, and an equal number of age sex-matched healthy controls formed the material for this study. Both males and females in the age group from 15 to 50 years were included for genomic instability test at Cytogenetic Division, Department of Anatomy and Department of Biochemistry, JIPMER, respectively. The study proposal was placed at Institute Research Council, JIPMER and Ethical Committee JIPMER (vide ref no. i.e C No. SEC/2011/1/1) and approved. Written informed
Diabetes and pre-diabetes have recently increased dramatically in India, comprising about 17% of the world's diabetes burden. Type 1 diabetes is a complex multigland autoimmune disorder where both genetic and environmental factors, such as nutrition or infection, act as triggers and result in pancreatic cell damage. In diabetic patients, especially those with poor glycemic control and hyperglycemia, the production of reactive oxygen species (ROS) and lipid peroxidation is elevated. ROS causes damage to cellular macromolecules. Oxidative stress-induced DNA damage appears to have a role in the pathogenesis of type-1 diabetes mellitus (T1DM) and its complications. Some in-vitro tests like Sister Chromatid Exchange (SCE) test, chromosomal aberrations analysis, and the cytokinesis-block micronucleus assay in lymphocytes have been developed to assay chromosomal damage. SCE is a natural process where two chromatids exchange certain homologous sections of DNA sequence. When genotoxic chemicals damage cellular DNA, the rate of sister chromatid exchange increases. This case-control study aimed to analyze and evaluate the sister chromatid exchange in type 1 diabetic patients.

In the current investigation of Type I Diabetic patients, the sister chromatid exchange score (SCE/cell) was 7.79±1.45 in cases compared to 4.47±1.12 in controls. The data was statistically significant. Also, no significant difference in SCE levels between the two age groups. Cinkilic et al., in their case-control study, evaluated 35 type-1 diabetic patients and 15 healthy for frequency of sister chromatid exchange as a part of their investigation. T1DM patients displayed a statistically significant and higher frequency of SCE (5.44±1.47) compared to the control (2.54±0.82). They also divided the study subjects into three age groups (<25, 25-44, and ≥ 45 years). Similar to the present study, the cases showed a significantly higher level of SCEs across all the age groups. However, the values of SCE in the current study were slightly higher.

A randomized case-control study of 20, type 2 diabetic patients and 15 controls was carried out by Sheth et al. to assess the frequency of SCEs. The SCE/metaphase in T2Dm was significantly higher with values like the present study, while the values were also higher in control group. Also, the values in people with diabetes were higher across all the age groups studied than in the controls.

RESULTS

Out of the 30 cases, 20 were males, and 10 were females. Out of the 30 Controls, 17 were males, and 13 were females. The cases and controls were further subdivided into two groups with age less than or equal to 25 and age more than 25. Sister chromatid exchange among the cases and controls showed a significant increase of SCE/cell among the cases compared to controls (p-value <0.0001), considered highly significant. Comparing the SCE/cell of cases and controls between the two subgroups showed that the levels are highly significant at the subgroup level also. But there was no significant difference between the subgroup of cases. Structural chromosomal aberrations like chromosomal loss, interchromatin adhesions, chromosomal loss and dicentric chromosomes are also noted in cases than in controls.

DISCUSSION

Diabetes and pre-diabetes have recently increased dramatically in India, comprising about 17% of the world's diabetes burden. Type 1 diabetes is a complex multigland autoimmune disorder where both genetic and environmental factors, such as nutrition or infection, act as triggers and result in pancreatic cell damage. In diabetic patients, especially those with poor glycemic control and hyperglycemia, the production of reactive oxygen species (ROS) and lipid peroxidation is elevated. ROS causes damage to cellular macromolecules. Oxidative stress-induced DNA damage appears to have a role in the pathogenesis of type-1 diabetes mellitus (T1DM) and its complications. Some in-vitro tests like Sister Chromatid Exchange (SCE) test, chromosomal aberrations analysis, and the cytokinesis-block micronucleus assay in lymphocytes have been developed to assay chromosomal damage. SCE is a natural process where two chromatids exchange certain homologous sections of DNA sequence. When genotoxic chemicals damage cellular DNA, the rate of sister chromatid exchange increases. This case-control study aimed to analyze and evaluate the sister chromatid exchange in type I diabetic patients.

<table>
<thead>
<tr>
<th>Table 1: Distribution of Sister chromatid exchange levels per cell in various age groups of cases and controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>SCE/Cell</td>
</tr>
<tr>
<td>Age</td>
</tr>
<tr>
<td><25</td>
</tr>
</tbody>
</table>

International Journal of Academic Medicine and Pharmacy (www.academicmed.org)
ISSN (O): 2687-5365; ISSN (P): 2753-6556

559
evaluated for SCE analysis. A significant difference in SCE/metaphase was noted between T2DM patients (2.25 ± 0.08) and controls (1.28 ± 0.04). Parallel results were also noted in the study by Nour El Din Abd El-Baky et al. The research group evaluated 51 T1DM cohorts and compared them with 15 healthy individuals to evaluate the occurrence of sister chromatid exchanges. Diabetic children showed a significantly higher frequency of SCE (5.93 ± 2.06) than controls (3.9 ± 2.5). Coherence in results is also noted in Blasiak et al. study to investigate the frequency of SCE in 50 T2DM patients compared with 30 healthy controls. T2DM patients showed a significantly higher frequency of SCE as compared to controls (7.11 ± 1.14 and 4.96 ± 0.92). Contradictory results were noted in the study by Vormittag, who found a higher level of SCE in controls compared to T2DM cases, but the difference was not statistically significant.

Limitations

Our study has several limitations, like a smaller number of subjects’ lack of evidence to support the increase in sister chromatid exchange in diabetic patients. The scope of the study can be further expanded by studying the oxidative stress level in these patients and correlating it with the DNA damage.

CONCLUSION

The study showed increased DNA damage, which manifests as sister chromatid exchange in diabetic patients. The scope of the study can be further expanded by studying the oxidative stress level in these patients and correlating it with the DNA damage.

REFERENCES

International Journal of Academy Medicine and Pharmacy (www.academicmed.org)
ISSN (O): 2687-5365; ISSN (P): 2753-6556