International Journal of Academic Medicine and Pharmacv

journal homepage: www.academicmed.org

Assessment of the Fall Risk in Patients with Diabetes

Emine Kır Biçer^{1*}

Department of Internal Medical Nursing, Faculty of Health Sciences, Hatay Mustafa Kemal University, Hatay, Turkey, ORCID; 0000-0002-4773-9393

Article info

Abstract

Research Article

Received: 15.02.2020 Received in revised form: 15.04.2020 Accepted: 27.04.2020 Available online: 05.06.2020

Keywords

Diabetes mellitus Falls Risk factors Diabetic foot

This study was designed to assessment the fall risk in patient with diabetes patients and to ascertain the extent to which diabetic complications and diabetic foot might be contributing factors to this risk. The sample of this descriptive, cross-sectional study consisted of 300 patients with diabetes who had been referred to department of diabetes and endocrinology at a university hospital in the south of Turkey. Data were collected using, the "Patient Information Form," "Turkish - Morse Fall Scale," and the "Diabetes Foot Risk Assessment Tool." Balance was assessed using the modified "Flamingo balance test." The mean age of the patients was 59.7±16.5 years, 58.7% of which were women. The mean number of years since the onset of diabetes was 13.3±10.0 years, while mean HbA1c levels were 9.0±2.3%. For most of the patients (64.3%), the risk of falling was high. The patients scored poorly on the Flamingo balance test. A significant relationship was found between the risk of falling and insulin use, obesity, neuropathy, nephropathy, high risk of developing diabetic foot, cardiovascular and cerebrovascular illness, foot deformation, reduction of sensation in the foot, and the absence of peripheral pulse (p<.001). A moderately positive relationship was found between falling risk and age (r = .427, p<.001), and number of years since the onset of diabetes (r = .409, p<.001), and a weak positive one between falling risk and weight (r = .159, p<.01). This study determined that most diabetic patients had a high risk of falling and that the micro and macrovascular complications of diabetes increasing falling risk. Moreover, patients with diabetic foot risk had a high risk of falling. Consequently, it is recommended that complications be delayed by achieving metabolic control, foot health be improved, and strength and balance exercises be performed

INTRODUCTION

retinopathy, peripheral neuropathy. All of these changes contribute to an reduce the burden of falls in the population with diabetes. elevated risk of falling^{4,5}. Falls leading to serious injuries are more common in patients with diabetes and result in higher fall risk in patients with diabetes. The secondary target

healthcare costs and longer hospital stays ^{6, 7}.

Diabetic peripheral neuropathy patients tend to develop Diabetes Mellitus is an increasingly frequent metabolic disease unsteadiness, and decreased sensation and proprioception, parwith systemic and chronic complications. Diabetes is one of ticularly in the lower extremities 8. The damage caused by diathe fastest growing health challenges of the 21st century, with betes to the neuromuscular system results in losses in mobility the number of adults living with diabetes having more than and a decline in gait and balance parameters. Therefore, an tripled over the past 20 years. The latest edition of the IDF increase in patients' risk of falling is inevitable⁹. In addition. Diabetes Atlas shows that 463 million adults are currently the length of time since initial diagnosis of diabetes, the living with diabetes¹. According to TURDEP-II's Turkish Dia- severity of peripheral neuropathy, the presence of foot betes. Hypertension, Obesity and Endocrine Disorders Study, deformity, body mass index (BMI), gender, claudication pain in 2010, the incidence of diabetes in the adult Turkish popula- and peripheral arterial disease have a direct impact on the risk tion had reached 13.7%, while that of prediabetes was 23.7%². of falling ^{9,10}. According to the Standards Subcommittee of the Poor diabetes control, highly visible both in the world American Neurology Academy, peripheral neuropathy falls on and in our country, may result in such serious complications as the B plane, while gait and balance impairment fall on the A nephropathy, plane regarding the risk of falling¹¹. Most studies conducted on neuropathy, delayed wound healing, and erectile dysfunction³. diabetic patients in Turkey have been done over the past five Due to complications associated with diabetes, changes occur years and have been concerned with assessing the risk of in the body composition of people with the disease; muscle falling in geriatric diabetic patients 12, 13. However, there have strength and endurance decline as a result of insulin resistance. been no studies on the relationship between the complications Flexibility deteriorates as a consequence of obesity and visceral of diabetes and diabetic foot risk on the risk of falling. Postural instability occurs with the development of Understanding and acting on these risk factors could help to

The main aim of this study was to assessment of the

^{*}Sorumlu yazar/ Corresponding author: Emine Kır Biçer, E-Mail; eminekr@gmail.com http://dx.doi.org/10.29228/jamp.42918

included assessment to see the extent to which diabetic scale was adapted to Turkish society by Uymaz (2012), complications and diabetic foot might be contributing factors. Cronbach's alpha was found to be 0.57. ¹⁶ In a study done by

MATERIAL and METHODS

Design

This is a descriptive and cross-sectional study.

Sample and data collection

The study consisted of 300 diabetic patients from among the patients being monitored at a university hospital's Endocrinology and Diabetes Department between September-November 2019 who met the sampling criteria. The criteria for inclusion in the study were having had a diagnosis of diabetes for at least six months, having no diagnosis of psychiatric illness, and having no hearing or communication problems. The data were collected by the researcher through face-to-face interviews after having received the required institutional authorization. Medical information was obtained from patient files and recorded by the researcher.

Data Collection Instruments

Based on a literature review, the researcher chose three data collection instruments to use for the study⁶⁻¹⁰. These were the "Patient Information Form," the "Turkish-Morse Fall Scale" and the "Diabetes Foot Risk Assessment Tool." The Flamingo balance test was used to determine balance performance.

Patient Information Form: This form consists of two parts. Part one contains patient sociodemographic data and information on their diabetes and their diabetes control status. Part two comprises questions regarding falling (e.g., falling history, where and when falling occurred, way in which falling occurred, injury resulting from falling, measures taken to prevent falling).

Turkish-Morse Fall Scale (MFS): This scale was developed by Janice M. Morse in 1985 and revised in 2008. It is a short and easily usable scale having six components (fall history, secondary illness, walking assistance, IV treatment, gait, and mental status). The individual's risk of falling is determined according to the total points accumulated on the scale. Scores of 0–44 and 45 and above are assessed as "low/no risk of falling" and "high risk of falling," respectively. The fall risk numeric range on the MFS can range from 0 to 125 ^{14, 15}. The

scale was adapted to Turkish society by Uymaz (2012), Cronbach's alpha was found to be 0.57. ¹⁶ In a study done by Bayram in 2017, the sensitivity of the Morse Fall Scale in patients with diabetic neuropathy was found to be high¹⁷.

Diabetic Foot Risk Assessment Tool: Based on the findings of physical examination, risk assessment was done by using the "Best Practice Guideline Shaping the Future of Nursing; Reducing Foot Complications for People with Diabetes" prepared by Registered Nurses Association of Ontario (RNAO). The assessment criteria for this tool are "a history of foot ulcers, loss of protective sensation, structural or biomechanical disorders of the foot, circulation evaluation, and foot care information and behavior." It can be used for all diabetics 15 years of age and older¹⁸.

Flamingo Balance Test: An examination of balance was performed with the use of the "Flamingo balance test." The subjects stood on a beam which was 50 cm long, 5 cm high and 3 cm wide. While balancing on the preferred leg, the free leg was flexed at the knee and the foot of this leg held close to the buttocks. Then the instructor started the stopwatch and the subjects tried to stand in this position for one minute. The stopwatch was stopped each time the subjects lost the balance. It was started again until they lost the balance again. When the time was over, the subjects' attempts after they fell were counted and this score was recorded ¹⁹. The Balance Test used the following scoring system: No falling (5 points), 1-4 falls (4 points), 5-8 falls (3 points), 9-12 falls (2 points) and 15 or more falls (0 points).

Data analysis

The data obtained in this study were analyzed using Statistical Package for Social Sciences version 22.0 program. To analyze the data, numbers, percentage distributions, arithmetic mean, t test, one-way ANOVA and Pearson correlation were used. P < 0.05 was accepted as statistically significant in all analyses.

Ethical considerations

Hatay Mustafa Kemal University Ethical Committee approved this study (27.06.2019/12). Before the study began, all participants were informed of objectives and procedures of the study. Written informed consent was obtained from all participants. The study was conducted in accordance with the principles of the Declaration of Helsinki. Participation in this study was voluntary.

RESULTS

This study assessing the risk of falling in diabetic patients included a total of 300 individuals. Table 1 contains the patients' sociodemographic profiles and information regarding their illness and falls. The mean age of the diabetics participating in the study was 59.7 ± 16.5 , with 58.7% of them being

women, 72.7% married, 80.3% having primary school-level of literacy, and 44% of them living with their spouses. The mean length of time since having been diagnosed with the disease was 13.3±10.0 years. Most of the participants used insulin. The mean HbA1c level was 9.0±2.3%, demonstrating poor glycemic control. 18.3% of diabetics were at a high risk for developing diabetic foot (Table 1).

Table 1. Baseline and clinical characteristics of participants (n=300)

Variables	n	%	Variables		n	%
Gender			Using walking aids			
Female	176	58.7	Canes		54	18.0
Male	124	41.3	Walker		30	10.0
Marital status			Crutches		11	3.7
Married	218	72.7	No use		205	68.3
Single	82	27.4	Fall			
Education level			Yes		87	29.0
Primary school-Literacy	241	80.3	No		213	71.0
Secondary school	42	14.0	Frequency fall*			
High school/University	17	5.7	One		38	43.7
Living status			Two ≥ 2 (recurrent to	fall)	49	56.3
Alone	42	14.0	Location of the fall*			
Spouse	132	44.0	Street		31	35.6
Family	90	30.0	Home		46	52.9
Not close family	36	12.0	Hospital		10	11.5
Treatment type			How it fell*			
Oral hypoglycemic drug	96	32.0	Stumble		25	28.7
Insulin	152	50.7	Slipping		26	29.9
Insulin, oral medications	52	17.3	Loss of balance		37	42.5
Diabetic foot risk			Dizziness		32	36.8
Low risk	245	81.7	Syncopal		14	16.1
High risk	55	18.3	Not sure		10	11.5
Morse fall risk			Injury after fall*			
Low/no risk of falling(0-44)	107	35.7	No		34	39.1
High risk of falling (≥ 45)	193	64.3	Fractures		28	32.2
Walking aid			Bruising		23	26.4
No use	205	68.3	Muscle tear		2	2.3
Use	95	31.7				
	n	ľ	Mean±SD	min	ma	ıx
Age (years)	300		59.7±16.5	16	10	5
Diabetes Duration (years)	300		13.3±10.0	1	67	
HbA1c	176**	9.0±2.3		5.0	16.9	
Flamingo Balance Test	300		1.6 ± 1.9		4	
Morse Fall Risk Score	300	53.26 ± 26.20		0	125	

^{**}n=176, patient with HbA1c

patients, 31.7% use a walking aid. The aids used include canes relationship between these scores and weight (Table 4). (18.0%), walkers (10.0%) and crutches (3.7%). According to the Morse Fall Scale, most of the patients were at high risk of falling (64.3%). The patients' mean score on the scale was 53.26±26.20. 29.0% (n=87) of the subjects had a history of falling within the previous year. Of these, 43.7% had fallen once, while 56.3% had fallen repeatedly. Of the patients who fell, 52.9% had fallen at home, 35.6% on the street, and 11.5% in the hospital. Most of the patients (42.5%) had fallen due to loss of balance, 36.8% due to dizziness, and 29.9% due to slipping. Fractures occurred in 32.2% and bruising in 26.4% of the cases where falling had occurred. Flamingo balance test scores of the patients were in the "poor" range (Table 1).

Diabetics that have fallen within the previous year (t=10.272, p<.001), use walking aids (t=10.332, p<.001), experience incontinence (t=4.729, p<.001), and take four or more medications each day (t=9.284, p<.001) have a higher fall risk than those that do not fall into these categories. The risk of falling also climbs with increased Body Mass Index. The same is true for diabetics that were also obese (F=3,429; p<.01) (Table 2). However, the study did not find a significant risk of falling in the case of patients with osteoarthritis (t=1.928, different types of anti-diabetes treatments (F=2,672, p>.05), a history of hypoglycemia (t=1.689, p>.05) or an absence of peripheral pulses (Table 2, Table 3).

Table 3 compares the means of the risk of falling for patients having diabetic complications and diabetic foot risk. The study found that the mean risk of falling was greater in patients with retinopathy (t=5.438, p<.001), nephropathy (t=5.626, p<.001), neuropathy (t=3.181, p<.01), cerebrovascular disease (t=4.315, p<.001), and cardiovascular disease (t=5.327, p<.001) than in patients that do not fall into these categories (Table 3).

Comparing diabetic foot risk factors, patients with a high diabetic foot risk (t=-6.125, p<.001), reduced protective sensation (t=2.423, p<.01), amputations (t=3.932, p<.001), diabetic foot wounds (t=6.362, p<.001), a history of foot wounds (t=4.357, p<.001) and foot deformities (t=5.817; p<.001) have a higher risk of falling than those that do not fall into these categories (Table 3).

In addition, in diabetic patients, there was a modest positive relationship between risk of falling scores and age (r = .427, p<.001) and length of time since having been

Of the subjects included in this study on falls in diabetic diagnosed with diabetes (r=.409, p<.001), and a weak positive

Table 2. A comparison of participant characteristics and mean scores

	n	MFS	Test	
		Mean score ±SD	statistics	
			p value	
Gender *				
Female	176	54.71±25.94	p >.05	
Male	124	51.20±26.52		
≥ 4 Medication use *				
Yes	149	65.73±23.28	t=9,284	
No	151	40.96±22.94	p<.001	
Fall in the last year *				
Yes	87	74.19 ± 21.81	t=10,272	
No	213	44.71 ± 23.11	p<.001	
Walking aid use*				
Yes	95	73.00±20.33	t=10,332	
No	205	44.12±23.45	p<.001	
Osteoarthritis *				
Yes	22	60.90±19.06	p >.05	
No	277	52.49±26.51		
Incontinence*				
Yes	76	65.13±24.73	t=4,729	
No	224	49.24±25.50	p<.001	
Body Mass Index (BMI) (kg/m²)**				
(BMI) (kg/m²)** Underweight	10	32.21±21.88		
Normal weight	-			
Overweight	72	49.93±25.22	F=3,429	
Obesity				
	101	53.51±26.57	p<.01	
	117	56.92±25.97		
GD G(1 11 1 1 1		*C: 1		

SD = Standard deviation

^{*}Student t test,

^{**}One-Way ANOVA

Table 3. A comparison of diabetes characteristics and mean scores on the Morse Fall Risk Scale(MFS) (n=300)

	n	MFS Mean scores±SD	Test statistics p value
Insulin use *			
Yes	204	55.83±28.07	t=2,773
No	96	47.81 ± 20.78	p < .01
Antidiabetic Drug using**			
OAD	96	48.22±21.12	
İnsulin	152	55.36±27.96	p >.05
Combine(insulin, OAD)	52	56.44±28.39	
Retinopathy *			
Yes	162	60.21±24.97	t=5,438
No	131	44.23±25.04	p<.001
Nephropathy *			
Yes	91	65.54±22.96	t=5,626
No	209	47.91±25.76	p<.001
Experience of hypoglycemia *			1
Yes	203	54.87±25.15	p > .05
No	96	49.42±27.86	r · · ·
Cerebrovascular disease *			
Yes	20	77.00±27.30	t=4,315
No	280	51.57±24.76	p<.001
Cardiovascular disease (CVD)*			-
Yes	118	62.66±25.37	t=5,327
No	181	46.90±26.02	p<.001
Peripheric pulses			
Absent	22	59.31±32.34	p > .05
Present	278	52.78±25.66	1
Diabetic foot risk *			
Low risk	245	49.12 ± 24.64	t=-6,125
High risk	55	71.72±25.11	p<0.001
Loss of protective sensation (using with 10g monofilament)* Yes		,, 2—20.11	p 0.001
No	209	55.90±23.65	t=2,423
	91	47.19±30.54	p<.01
		17.17=30.34	p · .01
Diabetic peripheral neuropathy (DPN) *	40-		
Yes	187	56.95±24.46	t=3,181
No	113	47.16±27.90	p<.01
Amputation*	2.0		
Yes	20	75.00±22.00	t=3,932
No	280	51.71±25.81	p<.001
Diabetic foot wound *	0.5		
Yes	83	67.89±24.67	t=6,362
No	217	47.67±24.60	p<.001
Previous diabetic foot wound*			
Yes	97	62.52±24.67	t=4,357
No	203	48.84±25.80	p<.001
Foot Deformities *			
Yes	75	67.73±24.49	t=5,817
No	225	48.44±24.99	p<.001

SD = Standard deviation

Table 4. Relationship between the participants' risk of falling and their age, length of time since having been diagnosed with diabetes, and weight (n=300)

	Age (year)	Diabetes Duration	Weight
Fall Risk*	r = 0.427	r = 0.409	r = 0.159

^{*} Pearson correlation

DISCUSSION

tients by using the Morse Fall Scale and the relationship can result in disabilities that produce risk factors for falling²².

in most of the diabetics was high. Falling is an undesirable situation having many causes. One of these involves the prob-This study, which assessed the risk of falling in diabetic pallems created by chronic illnesses 12, 20, 21. Diabetic complications between diabetic foot and this risk, found that the risk of falling Studies report that there is a relationship between diabetes and

^{*} Student t test,

^{**}One-Way ANOVA

the risk of falling and that falling is more prevalent in elderly. The damage in the neuromuscular system produced by diabetes and the risk of falling ²⁵.

had diabetes and the risk of falling.

that other important risk factors for falling include impaired current research support these findings. vision and peripheral neuropathy ^{22, 25, 29}. Diabetic peripheral

diabetics^{7, 22-24}. Our study found a moderately positive causes impaired mobility, walking and balance. Therefore, an relationship between age and the risk of falling and that this increase in patients' risk of falling is inevitable^{9, 22, 32-34}. Studies increased with advancing age. However, there are also studies have shown that compared to healthy adults, persons with DPN in the literature that have not found a relationship between age have 23 times the risk of falling, and 15 times the risk of injury³⁰. This study similarly found that persons with diabetic Yau et al. (2013) reported that persons with poor neuropathy, reduced protective sensation in the foot, and foot glycemic control (HbA1c ≥8%) and long-term diabetes (≥16 deformities, present or past foot ulcers, or amputations had a years) tended to be hospitalized more due to falls more often high risk of falling (p<.001). In addition, the study assessed and that they fell three times more often than persons who did the patient's risk of diabetic foot using the RNAO guide and not use insulin. This has been attributed to frequent fainting, compared their risk of falling. It found that patients at high poorer balance, reduced kidney function and multiple risk for diabetic foot were also at a high risk for falling. The prescription drug use⁷. Another study, done in Scotland, found subjects also received poor balance scores on the Flamingo that serious injury due to falling in diabetic patients being balance test used in the study. Those needing walking treated with insulin was much higher than in the general popuassistance were also at an increased risk of falling (p<.001). lation ²⁶. This study supports the conclusions of other studies in Studies have shown that there are certain parameters that have the literature that found that the risk of falling was higher in a direct impact on walking in diabetes 9. For example, the diabetics that used insulin, had diabetes-caused nephroplasia, length of time an individual has had diabetes and the presence and used four or more medications. Similarly, hypoglycemia is of foot deformity play important roles in walking impairment. frequently seen in patients using insulin. Studies have shown BMI, gender and peripheral arterial disease are also factors that hypoglycemia is one of the major factors increasing the having an impact on such disability¹⁰. Studies have shown that risk of falling^{27,28}. Nevertheless, there are also ones that have elderly women are more like to seek hospital treatment after a found a weak relationship between hypoglycemia and falling⁷. fall than elderly men³⁵. Osteoporosis, which is seen more Our study did not find a significantly meaningful difference frequently in women, is a major reason for this 36. The current between patients with and without hypoglycemia and the risk study did not find differences on the basis of gender, of falling. Despite this, the risk of falling was high in both osteoarthritis, or the absence of peripheral pulse. Obesity, groups. Kukidome et al. (2017) reported that patients with a however, is one of the factors contributing to the risk of history of falling had diabetes for longer periods of time ²⁵. falling²⁸. Kukidomeda (2017)²⁵ and Chiba et al. (2015)²⁸ found This can be attributed to the emergence of complications the no significantly meaningful relationship between the risk of longer a person has had diabetes. Our study found a moderately falling and BMI. The current study determined that the risk of positive relationship between the length of time a person had falling was higher in patients with high BMI. It found a weak positive relationship between weight and risk of falling scores The complications of diabetes mellitus include (r=.159; P<.01). In addition, studies have shown patients with diabetic peripheral neuropathy (DPN) and retinopathy, both of a history of prior falls in the previous 12 months³⁷ and cardiowhich can lead to balance impairments. Studies have shown vascular diseases²⁸ have a higher risk of falling ^{6, 7, 38}. The

This study found that the risk of falling was high in neuropathy (DPN) is the most frequently seen complication in diabetic patients, the complications of diabetes increased the diabetics, affecting approximately half of this population. DPN risk of falling, and patients with a risk of developing diabetic impairs vibratory sensitivity, proprioception and reflexes, as foot also had a high risk of falling. Given the research findings, well as causes osteotendinous, all of which result in in order to reduce fall-related mortality in diabetics and compromised sensory and motor skills³⁰. A systemic review improve their quality of life, it is recommended that the factors done in 2016 supported the hypothesis that the diabetic contributing to falls in these patients be determined early and peripheral neuropathy had an impact on foot biomechanics³¹. measures be taken to prevent them; complications be delayed strength and balance exercises be performed.

Conflicts of Interest

The authors declare that they have no conflict of interests.

REFERENCES

- International Diabetes Federation. IDF Diabetes Atlas 9th Edition 15. Morse J. Preventing patients falls: Establishing a fall intervention Update. International Diabetes Federation 2019. Available from: https://www.diabetesatlas.org/en/
- Satman İ, Ömer B, Tutucu Y, Kalaca S, Gedik S, Dinccag N, et al. (2013). Twelve-year trends in the prevalence and risk factors of diabetes and prediabetes in Turkish adults. Eur J Epidemiol.28 (2): 169-80.
- Jacobsen R, Vadstrup E, Røder M, Frølich A. Predictors of Effects of Lifestyle Intervention on Diabetes Mellitus Type 2 Patients, The Scientific World Journal, 2012:1-8.
- Özay Z, Malkoç M, Angın S, Yeşil S, Bayraktar F. Effect of balance training on postural stability and walking in type 2 diabetic neuropathy. Fizyoterapi Rehabilitasyon. 2012;23(2): 55-64
- Morrison S, Colber, SR, Mariano M, Parson HK, Vinik Al. Balance training reduces falls risk in older individuals with type 2 diabetes, Diabetes care. 2010;33(4): 748-750.
- Volpato S, Leveille SG, Blaum C, Fried LP, Guralnik JM. Risk factors for falls in older disabled women with diabetes: the Women's Health and Aging Study. J Gerontol A Biol Sci Med Sci 2005;60:1539-1545.
- Yau RK, Strotmeyer ES, Resnick HE, Sellmeyer DE, Feingold 22. Tilling LM, Darawil K, Britton M. Falls as a complication of KR, Cauley JA, et al. Diabetes and risk of hospitalized fall injury among older adults. Diabetes Care. 2013 Dec;36(12):3985-91.
- Kanade RV, Van Deursen RWM, Harding KG, Price PE. Investigation of standing balance in patients with diabetic neuropathy at different stages of foot complications. Clin Biomech. 2008;23:1183-1191.
- Reyhanioğlu DA, Kara B, Şengün İŞ, Yıldırım G. Biomechanical changes seen in diabetic neuropathy, DEÜ Tıp Fakültesi Dergisi. 2018;32(2): 167-172.
- 10. Fernando M, Crowther R, Lazzarini P, Sangla K, Cunningham M, Buttner P, et al. Biomechanical characteristics of peripheral diabetic neuropathy: a systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin Biomech. 2013; 28: 831-845.
- 11. Thurman DJ, Stevens JA, Rao JK. Practice Parameter: 26. Assessing Patients in a Neurology Practice for Risk of Falls (An Evidence-Based Review). Neurology 2008;70(5):473-479.

- by achieving metabolic control, foot health be improved, and 12. Şahin A. A research of frequency and related factors on falls in diabetic elderly. Halic University, Institutes of Health Science, (Master Dissertation). Istanbul. 2017
 - 13. Işıntaş Arık M, Kiloatar H, Onbaşı K. Relationship between Balance and Fear of Falling in Geriatric Type 2 Diabetes Mellitus Patients. Turk J Physiother Rehabil. 2018;29(3):53-58.
 - 14. Morse JM, Morse RM, Tylko SJ. Development of A Scale to Identify The Fall-Prone Patient. Canadian Journal on Aging. 1989; 8(4):366-377.
 - program (2nd ed.). New York, NY: Springer. 2009:117-18.
 - 16. Uymaz PE. Evaluation of fall prevention program in elderly nursing home residents. (Doctoral dissertation). 2012. Retrieved from https://tez.yok.gov.tr/UlusalTezMerkezi/ tezSorguSonucYeni.jsp
 - 17. Bayram D. Assessment of fall risk of diabetic neuropathic patients according to three different fall risk scales. Divabet, Obezite ve Hipertansiyonda Hemşirelik Forumu. 2017;9(2):12-12.
 - 18. Registered Nurses Association of Ontario. Nursing best practice guideline shaping the future of nursing; reducing foot complications for people with diabetes, Review; 2007
 - 19. Hazar F, Taşmektepligil Y. The effects of balance and flexibility on agility in prepuberte period Spormetre. Journal of Physical Education and Sports Sci., 6(1): 9-12
 - 20. Eyigör S. Approach of falls. Ege Journal of Medicine. 2012; (Suppl 51): 43–51.
 - 21. Çınarlı T., Koç Z. Effect of risk and fear of falling on quality of life and daily living activities in elderly over 65. Gümüşhane University Journal of Health Science. 2015;4(4):665-667
 - diabetes mellitus in older people. J Diabetes Complications. 2006;20:158-62.
 - Rashedi V, Iranpour A, Mohseni M, Borhaninejad V. Risk factors for fall in elderly with diabetes mellitus type 2, Diabetes &Metabolic Syndrome: Clinical Research &Reviews 2019;13:2347-51.
 - Oliveira PP, Fachin SM, Tozatti J, Ferreira MC, Marinheiro LP. Comparative analysis of risk for falls in patients with and without type 2 diabetes mellitus. Rev Assoc Med Bras. 2012;58(2):234-
 - Kukidome D, Nishikawa T, Sato M, Nishi Y, Shimamura R, Kawashima J. et al. Impaired balance is related to the progression of diabetic complications in both young and older adults. J Diabetes Complications. 2017; Aug; 31(8):1275-1282.
 - Kennedy RL, Henry J, Chapman AJ, Nayar R, Grant P, Morris AD. Accidents in patients with insulin-treated diabetes: increased risk of low-impact falls but not motor vehicle crashes: a prospective register-based study. J Trauma. 2002;52: 660-666.

- et al. Hyponatremia and hypokalemia as risk factors for falls. European Journal of Clinical Nutrition 2015; 69(2): 205.
- 28. Chiba Y, Kimbara Y, Kodera R, Tsuboi Y, Sato K, Tamura Y, et al. Risk factors associated with falls in elderly patients with type 34. 2 diabetes. Journal of Diabetes and its Complications. 2015; 29 (7): 898-902.
- 29. UKPDS 35, Stratton, I. M., Adler, A. I., Neil, H. A., et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes prospective observational study. British Medical Journal, 2000;321 (7258):405-412.
- 30. Cárdenas JS, Díaz MZ, Bocanegra FC, Fall Risk Assessment in Older Adults with Diabetic Peripheral Neuropathy. In: Lin KP., Magjarevic R., de Carvalho P. (eds) Future Trends in Biomedical and Health Informatics and Cybersecurity in Medical Devices. ICBHI 2019. IFMBE Proceedings, vol 74. Springer, Cham. 2020
- 31. Yu G, Dennis SM. Are falls prevention programs effective at reducing the risk factors for falls in people with type-2 diabetes 38. mellitus and peripheral neuropathy: A systematic review with narrative synthesis. J Diabetes Complications. 2017;31:504-516.
- 32. Paul L, Ellis BM, Leese GP, McFadyen AK, McMurray B. The effect of a cognitive or motor task on gait parameters of diabetic patients, with and without neuropathy. Diabet Med. 2009; 26:234 -239.

- 27. Tachi T, Yokoi T, Goto C, Umeda M, Noguchi Y, Yasuda M. 33. Hazari A, Maiya, AG, Shivashankara KN, Agouris I, Monteiro A, Jadhav R. Kinetics and kinematics of diabetic foot in type 2 diabetes mellitus with and without peripheral neuropathy: a systematic review and meta-analysis. Springerplus. 2016;5:1819
 - Allen MD, Doherty TJ, Rice CL, Kimpinski K. Physiology in Medicine: Neuromuscular consequences of diabetic neuropathy. J Appl Physiol. 2016; 121: 1-6.
 - 35. Gale C R, Cooper C, Aihie Sayer A. Prevalence and risk factors for falls in older men and women: The English Longitudinal Study of Ageing. Age and Ageing. 2016; 45(6): 789-794.
 - 36. Chang V C, Do M T. Risk factors for falls among seniors: implications of gender. A merican Journal of Epidemiology. 2015; 181(7): 521-531.
 - 37. UKPDS 38. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes. UK Prospective Diabetes Study Group. British Medical Journal, 1998:317 (7160):703-713.
 - Schwartz AV, Vittinghoff E, Sellmeyer DE, Feingold KR, de Rekeneire N, Strotmeyer ES, et al.; Health, Aging, and Body Composition Study. Diabetes-related complications, glycemic control, and falls in older adults. Diabetes Care 2008; 31:391-396.