Hydroxychloroquine: New Perspectives for an Indispensable Old Drug

Sevgi Akarsu^{1*}

¹ Dokuz Eylül University, Faculty of Medicine, Department of Dermatology, Izmir, Turkey

Article info	Abstract	Review Article
Received: 05.05.2020 Received in revised form: 25.05.2020 Accepted: 28.05.2020 Available online: 05.06.2020	anti-infective, antithrombotic, antitumoral (pronounced effects properties (improved lipid profiles, decreased insulin resistan	g to its lysosomotropic, immunomodulatory, anti-inflammatory, on autophagy and apoptosis processes) and beneficial metabolic nce). We know that chronic low-dose HCQ therapy has been imatological and dermatological disorders. Additionally, with all
<u>Keywords</u>	many chronic metabolic disorders, serious life-threatening co	can also be useful mostly as an adjuvant in the management of onditions such as cardiovascular, neurological, oncological and More recently, this former drug, whose effectiveness has been
Antimalarial Hydroxychloroquine Drug repurposing Novel coronavirus disease 2019,	shown in the global coronavirus disease 2019 (COVID-19) pa	andemic, has entered the spotlight again. Ongoing clinical trials still receiving great attention. In this article, the mechanisms of

INTRODUCTION

COVID-19

The process of finding new therapeutic indications for existing drugs currently in use for other diseases has been gaining increasing attention over the past few years. This process is defined as "reuse of old drugs" or "repurposing of drugs", and has often been shown to be successful¹. As it is known today, hydroxychloroquine (HCQ), which was first indicated to prevent or cure malaria, have also been used successfully in the of rheumatological, treatment some autoimmune. dermatological, immunological and infectious diseases²⁻⁹. In addition, there are still ongoing in vitro or in vivo investigations through some clinical, animal and/or laboratory studies to evaluate their effectiveness in some clinical situations particularly in the fields of oncology and neurology ^{3,4,8}. More recently, this old drug has entered the spotlight again due to the fact that it has been shown to be effective promisingly in the global coronavirus disease 2019 (COVID-19) pandemic ¹⁰⁻¹⁹.

In this article, case reports, clinical trials, cohort studies, systematic reviews and meta-analyses associated with current and new indications of HCQ published up until now were comprehensively evaluated. The Medline literature database was searched through PubMed using the key words, individually and in combination: 'hydroxychloroquine',

'antimalarial', 'indications', 'clinical use', 'therapeutic use', 'new perspectives', 'drug repurposing', 'medicine', 'rheumatology', 'dermatology', 'neurology', 'oncology', 'cardiology', 'infection' and 'novel coronavirus disease'. Only articles available in original or translated English were reviewed.

ıam

History of HCQ

Antimalarials have existed for more than 300 years. In ancient times, the native Quechua people of South America were known to crush the bark of the cinchona tree and add sweetened water to produce tonic water for the treatment of many ailments, including fever. The name of the bark 'Quina quina' derives from the Inca language. This quinine-containing extract brought to Europe by Jesuit missionaries to treat malaria in the 1600s and was the first recorded drug to treat an infectious disease. This growing interest in the beneficial medicinal properties of the chinchona bark caused the British and Dutch to invest money in the plantations of these trees, and the use of quinine was the basis of antimalarial therapy 20 . In July 1934, Hans Andersag modified the quinacrine to replace the acridine ring with a quinoline ring and gave the world a gift of "chloroquine" (CO)²¹. The observation of the effectiveness of CO analogs in autoimmune diseases has been accidental like

many important discoveries in medicine, and has been noticed rheumatological diseases, cardiovascular disorders, chronic during World War II by antimalarial prophylaxis with kidney disease, dermatological diseases and infectious diseases quinacrine and CQ improving skin rashes and inflammatory ²⁻⁹. Anti-infective, antithrombotic and antitumoral properties of arthritis in soldiers²⁰. However, this was not an entirely new this drug have also been described^{8,9,25,26}. In addition, discovery, as a British doctor Joseph Frank Payne, who was a beneficial metabolic properties of HCQ including improved doctor at St Thomas' Hospital in London, suggested using lipid profiles, decreased insulin resistance and reduced quinine as a possible treatment for systemic lupus incidence of diabetes mellitus have been identified 27-29. The ervthematosus (SLE) in 1894, considering a vascular etiology use of HCO has been associated with a lower risk of ²². In the postwar period, in 1955, "HCO" was produced in hyperlipidaemia as decreased levels of serum low-density America by the addition of a ß-hydroxy chain to the CQ lipoprotein-cholesterol, total cholesterol and triglyceride molecule as a more reliable and less toxic alternative agent than concentrations, irrespective of concomitant steroid use in CQ²³. Currently, HCQ (Plaquenil® tablets contain 200 rheumatoid arthritis and SLE patients ³⁰. This favourable effect mg HCQ sulfate) is still the most commonly used so-called may be due to HCQ upregulating LDL receptors and increasing antimalarial agent in the treatment of non-malarial and chronic lipid excretion ³¹. Similarly, over the past 2-3 years, it has autoimmune diseases²⁻⁴.

Mechanisms of therapeutic action of HCQ

general by HCQ shows its therapeutic effects in anti-infective, anti-inflammatory, immunomodulatory, antithrombotic and metabolic properties 5,23-28. It is well known aminoquinoline accumulates lysosomes, that this in phagolysosomes and other intracellular acidic compartments and concentrates approximately 1000 times higher. HCQ has a powerful immunomodulatory feature that affects multiple consecutive steps in the process of immune recognition, response and downstream generation of inflammation. Since it has a weak diprotic base structure, it increases the pH of intracellular compartments, and so prevents the functions of phagocytosis and antigen presentation to T cells^{23,24}. In vitro investigations have shown that HCQ at concentrations routinely achieved with chronic low-dose therapy potently inhibits the nuclear factor of kappa B pathways in the macrophages and T helper type 1 lymphocytes. It has antiproliferative effect on T cells. Thus, it reduces the production of various pro-inflammatory cytokines including interferon-gamma, tumor necrosis factor-alpha, interleukin (IL) -1, IL-2 and IL-6, which play a key role in adaptive immune response. HCO also reduces natural immune activation by blocking the interaction of the Toll-like receptor (TLR) family, especially TLR3, TLR7 and TLR9 with nucleic acid ligands ^{3,5}.

With above-mentioned the lysosomotropic, immunomodulatory and anti-inflammatory properties, chronic low-dose HCO therapy can be used in a variety of chronic diseases with altered immune recognition and/or responses such as

become clear that high doses of these compounds have pronounced effects on autophagy and apoptosis processes, leading to the applications of HCQ in oncology ^{3,4,8}. With all these effects showing synergism, HCQ can be useful alone or as an adjuvant in the treatment of many chronic metabolic diseases, serious life-threatening conditions, and serious infectious diseases, as well as their accompanying morbidities. Recently, some clinical trials support that the repurposing of HCO has included some neurological and oncological diseases. some major adverse cardiovascular events, and promisingly COVID-19 pandemic ^{3,4,10-19}. Ongoing clinical trials testing HCQ in new indications and challenging diseases are still receiving great attention.

Clinical Use of HCO

Use of HCQ in Infectious Diseases

CQ and HCQ, mainly used for malaria treatment and prophylaxis, have not only antiparasitic but also antiviral, antibacterial and antifungal effects. HCQ is thought to inhibit the growth of intracellular pathogens, leading to alkalization of lysosomes and other intracellular acidic compartments. Alkalization leads to the expansion and vacuolization of lysosomes, followed by inhibition of their functions. This process can reduce post-transcriptional modification of proteins, release of enzymes, recycling of receptors, activation of cell signaling pathways and repair of cell membranes ^{3,9,24}. CO analogs used in the treatment of uncomplicated malaria due to Plasmodium vivax, P. malariae, P. ovale and P. knowlesi directly interfere with the heme polymerization process of plasmodium and indirectly contrast the hemoglobin digestive tract of the parasite 3,23 .

disease (a chronic bacterial infection caused by Tropheryma infections may be related to its TLR antagonist activity^{3,9}. whippeli) is a combination of HCQ and doxycycline. successful results are obtained ³²⁻³⁴.

doses of HCQ ³⁶.

but also from the effects of the immune response mediated by maximize effectiveness in HIV-infected patients ^{38,41}. the release of pro-inflammatory cytokines, chemokines and other mediators 9,38. As previously known, a number of case- flavivirus infections at different stages such as Japanese control studies have supported the associations between human encephalitis virus internalization, TLR polymorphisms and susceptibility to viral infections (e.g., replication, and Dengue virus Crimean-Congo hemorrhagic fever virus. immunodeficiency virus, respiratory syncytial virus, hepatitis C and dengue hemorrhagic fever. Rarely, life-threatening dengue virus, herpes simplex virus)^{39,40}. It has also been demonstrated shock syndrome occurs after a second DENV infection. Wang

that there is a relationship between some TLRs (such as The primary option for the treatment of O fever (a TLR8,TLR9) polimorphism with increased mortality in severe bacterial zoonosis caused by Coxiella burnetii) and Whipple's viral infections ⁴⁰. The therapeutic mechanism of HCQ in these

The anti-human immunodeficiency virus (HIV) Recurrences have been reported even after long-term treatment feature of CQ analogs appears to be associated with the when doxycycline is used alone or combined with other inhibition of post-translational modification of glycoprotein antibiotics. Replication of bacteria that play a role in the 120 primarily in T cells and monocytes, thereby altering its pathogenesis of these infections in low pH phagolysosomes and immunogenic properties. Another important factor modulated this reduces the effectiveness of antibiotics have been by CQ analogs is immune activation seen in HIV infection^{40,41}. associated with relapses. Due to the vacuole alkalization It has been suggested by Piconi et al. that HCO reduces induced by HCQ, doxycycline shows antibacterial activity and lipopolysaccharide/TLR-mediated immune activation and may be a useful immunomodulant in HIV-infected patients. It has Although HCO does not represent primary care in been reported that HCO-induced immune modulation was fungal diseases, antifungal activity of aminquinolines has also associated with increased percentages of circulating CD4(+) T been reported. It has been hypothesized that suppression of cells and this compound had a notable impact fungal growth with CQ derivatives may be due to pH on immune activation as shown by significant modifications of deprivation of iron or alkalization of intracellular vacuoles the following parameters: reduced plasma lipopolysaccharide; 9,24,35. HCQ has been shown to have in vitro antifungal activity, decreased TLR4-expressing CD14(+) cells, TLR4-mediated mainly against intracellular fungi such as Histoplasma capsula- signal transduction, and mRNA synthesis; reduced percentages tum and Cryptococcus neoformans⁹. Yeo et al. reported that of activated CD4(+) (CD4(+)/Ki67(+)) and CD14(+) (CD14 Pneumocystis pneumonia was more common in patients with (+)/CD69(+)) cells; increased T-regulatory cells (Tregs), naive SLE who had moderate to severe renal disease, mycophenolate Tregs, and TLR4-expressing Tregs; augmented plasmacytoid mofetil/mycophenolic acid use, and high doses of dendritic cells and reduced IFNa-secreting plasmacytoid glucocorticoid/cyclophosphamide use; however, they have dendritic cells; and reduced IL-6 and tumor necrosis shown that this risk is reduced by the antifungal effect of high factor-alpha production ⁴³. In addition, the selective apoptosis of the memory T cell compartment (CD45RA-CD45RO+) has The antiviral effects of HCQ have also been been shown to be induced by HCQ, which can significantly extensively studied. HCQ is a cellular autophagy modulator reduce the HIV viral reservoir ⁴⁴. This activity of CQ analogs that interfere with late stages of replication of enveloped appears synergistic with that of other antiretroviral drugs. viruses such as retroviruses, flaviviruses, and coronaviruses. However, unlike early studies, the benefit of HCQ in changing Several studies have demonstrated that it offers considerable the course of HIV disease has not been demonstrated in broad-spectrum antiviral effects via decreasing the pH and patients with high CD4 cell counts that have not vet begun interfering with the fusion process of these viruses ^{12,37}. The antiretroviral therapy in a randomized, double-blind, serious clinical consequences of viral diseases arise not only placebo-controlled clinical trial ⁴⁰. Recent reviews have placed from direct viral infection and the destruction of sensitive cells, particular emphasis on HCQ start time and dosage selection to

> HCQ was also reported to interfere in mosquito-born yellow fever virus (DENV) maturation. human DENV-infected people show self-limited febrile dengue fever

treated with HCQ before but not after DENV-2 infection. that the overall case-fatality ratio, which was 2.3% on average. Therefore, it has been reported that the cellular environment increased to 8% in patients aged 70-79 years and to 14.8% in change with HCO treatment may be crucial to restrict DENV-2 patients older than 80 years. However, it is believed that the infection, whereas the late stage of interference in virion number of asymptomatic carriers in the community is not maturation might not be the major mechanism of HCQ actually low, and possibly mortality rates are reported lower anti-DENV-2 activity. As a result, it was thought that HCQ than they are ¹⁹. preventive therapy may be an appropriate strategy to reduce the severity and spread of the DENV outbreak in the region of the anti-coronaviral activity of CO than HCO, both agents show dengue pandemic or during the season ⁴⁵. The Zika virus theoretically similar antiviral activities ^{15,37}. Inhibition of SARS (a member of the Flaviviridae family that infects humans with -CoV2 spread in CO-treated cells before or after infection has mosquitoes and ticks) has been shown to infect human neural demonstrated both prophylactic and therapeutic advantages of precursors and is associated with serious microcephaly if the CQ in the fight against SARS-CoV2¹⁰. Given that HCQ shows infection is obtained during pregnancy ⁴⁶. Given the absence of molecular mechanisms similar to CO. HCO is likely to perform any established treatment against the Zika virus during similarly in terms of early prevention and progression of the pregnancy and the safety of HCO during pregnancy, it has disease. Zhou et al. have suggested that HCO is a better recently been proposed to use this drug for the treatment and therapeutic approach than CQ for the treatment of prophylaxis of Zika virus infection in humans ^{47,48}. In the SARS-CoV-2 infection. The clinical safety profile of HCQ is infection of the Chikungunya virus (an alphavirus transmitted better than CQ because it can be used at higher doses for a by Aedes aegypti and A. albopictus mosquitoes), the early short time and less drug interactions ¹¹. Yao et al.'s. has phase characterized by the acute (fever, severe polyarthritis, recommended a treatment protocol (HCO sulfate 400 mg given rash) and following the post-acute phase (peripheral vascular twice daily for 1 day, followed by 200 mg twice daily for 4 disorders, neuropathy, neuropsychiatric disorders) gets better more days) to treat SARS-CoV-2 infection¹⁷, Gautret et al. has generally in three months. However, after the third month, the shown that the effect of HCQ treatment on viral load reduction/ disease can enter a chronic stage with rheumatic, disappearance in patients with COVID-19 increased with musculoskeletal and other symptoms. HCQ therapy has been azithromycin¹⁸. shown to be effective when combined with methotrexate and sulfasalazine in patients with chronic persistent chikungunya angiotensin-converting enzyme 2 cellular receptors of arthritis 49.

characterized by excessive proliferation of immune cells and possibility of cytokine storm¹¹. cytokines, multi-organ system failure and fatal damage to vital

et al. have found HCO greatly inhibited viral replication in cells organs such as lungs, kidneys and heart ¹¹⁻¹⁷. It was observed

Although more clinical data are available on the

HCQ alters the glycosylation of the coronaviruses. It can also increase the pH of the endosomes and More recently, COVID-19, caused by infection with lysosomes, thereby preventing the fusion process and the severe acute respiratory syndrome coronavirus 2 (SARS- subsequent replication of the virus with the host cells. When CoV-2), outbreak in December 2019, starting in Wuhan, China HCQ enters antigen-presenting cells, it prevents antigen and spreading quickly to almost all of the countries worldwide. processing and MHC class II-mediated autoantigen The WHO declared the epidemic of COVID-19 as a pandemic presentation to T cells. As a result of disruption of the on March 12th 2020¹⁹. The disease is mild in approximately interaction of DNA/RNA with TLRs and the nucleic acid 80% of infected patients. The transition from first symptoms to sensor cGAS, the transcription of pro-inflammatory genes acute respiratory distress syndrome occurs in many severe cannot be stimulated with HCQ treatment. It will also alleviate COVID-19 cases and the median time between these periods is the serious progression of COVID-19 by reducing CD154 approximately 8 days (6-12 days). This process is likely to expression in T cells and inhibiting cytokine storm. Consequresult from uncontrolled cytokine release. As a result of ently, the application of CQ/HCQ not only prevents invasion cytokine release syndrome or 'cytokine storm', which is and replication of the coronavirus, but also reduces the

Use of HCO in Rheumatologic Diseases

in vivo studies of the potential mechanisms of HCO in effective in relieving pain⁵⁶. autoimmunity and inflammation. HCQ use has become a part primary Sjögren syndrome and antiphospholipid syndrome ^{4,5}.

database ^{3,4,7}. It should be borne in mind that a significant been observed ⁵⁸. proportion of patients may not initially respond to HCO, but clinical response can be obtained in most by gradually increasing the dosage ⁵⁰. The use of HCQ has been shown to prevent lupus flares, increase long-term survival, and protect against irreversible organ damage, thrombosis and loss of bone mass. The use of HCQ in lupus is associated with reduced incidence of new onset organ damage, including serious complications such as nephritis and cerebritis. It has been shown that the risk for thrombotic events, cardiovascular events, and cardiovascular mortality are reduced with HCQ. Current or past use of HCQ has also been associated with higher spinal bone mineral density in female patients with SLE ⁵¹⁻⁵³. In another study, Mena-Vázquez et al. has observed that HCQ could delay the development of polyautoimmunity (co-occurrence of SLE and another autoimmune disease, such as autoimmune thyroiditis, rheumatoid arthritis, scleroderma, inflammatory myopathy and mixed connective tissue disease) in SLE patients 54.

Similar to SLE, positive results of HCQ therapy have been shown in the long-term management of rheumatoid arthritis in relation to its pleiotropic effects on inflammation and bone metabolism ^{4,55}. It is used as a sole agent in patients with milder severity of disease or as an adjunct to disease-modifying agents in those with severe systemic manifestations. "Triple drug therapy" containing methotrexate, sulfasalazine and HCQ is considered cheaper than new biological treatments ^{4,5}.

HCQ is also used in the treatment of Sjogren's syndrome, which affects the exocrine sweat glands and many extraglandular organs, but its effectiveness is still controversial ⁵. In a recent review, the effectiveness of HCQ in primary

Sjogren's syndrome was not different from placebo in the The incidental discovery of the clinical benefits of antimalarial treatment of xerostomy and xerophthalmia, and was even lower agents in rheumatological diseases has led to many in vitro and in fatigue treatment than placebo; however, it was more

Previous studies have demonstrated a lower of current treatment guidelines for SLE, rheumatoid arthritis, prevalence of antiphospholipid syndrome-related morbidity, a lower incidence of pregnancy complications and a higher rate We know that the use of CO derivatives in patients of live births in women with antiphospholipid syndrome treated affected by SLE is not new, and HCO has been historically with HCO 5,57. In some studies, HCO has been reported to used primarily in patients with cutaneous lupus. Successful effectively prevent recurrence of catastrophic antiphospholipid results for HCO have been confirmed in patients affected by syndrome in pregnancy. The therapeutic role of HCO in two discoid SLE as a result of systematic reviews of the Cochrane patients with catastrophic antiphospholipid syndrome has also

Use of HCQ in Dermatological Diseses

With the effects of immune-modulatory, anti-inflammatory, inhibition of mast cell infiltration, angiogenesis suppression and protecting cells against UVB exposure, HCQ has been used in many dermatological diseases but variable results have been reported 7,59,60. In cutaneous lupus erythematosus (which provides the most clinical benefit from HCQ), responses vary by disease subtype but it is effective in more than half of the cases ⁷. In a meta-analysis of 1,284 courses of HCQ among 16 studies, the total response rate was found to be 61% (highest in acute cutaneous lupus, lowest in chilblain lupus)⁶¹.

Recently, 84 patients with morphea who had been using HCQ as monotherapy for six months were evaluated by Kumar et al. and a full recovery of 43% was determined. Among the morphea types, plaque morphea has been observed to respond better to HCQ than generalized, linear and deep subtypes ^{62,63}. In many case reports, 70-80% effectiveness of HCQ has been demonstrated in the treatment of cutaneous, oral and genital lichen planus 64,65. Response rates ranging from 41% to 83% have been reported in patients with lichen planopilaris/frontal fibrosing alopecia⁶⁶. Approximately half of the patients with granuloma annulare (55.6%) responded to HCQ, and it has been recommended as a third-line treatment especially in those with widespread lesions ⁶⁷. In an open clinical study involving patients with cutaneous sarcoidosis, approximately 70% complete response was received with HCQ, and it has been proposed as an adjuvant therapy for systemic or severe cutaneous sarcoidosis⁶⁸. HCQ has also been reported to be effective in panniculitis patients such as chronic erythema nodosum, lupus panniculitis and lipoatrophic

panniculitis⁶⁹. It is a recognised therapeutic option for the approximately 30% reduction in the risk of cardiovascular treatment of chronic idiopathic urticaria and can also be disorders ³⁰. In a variety of animal studies including the models considered as a steroid-sparing agent in patients with urticarial of metabolic syndrome, diabetes mellitus, hyperlipidemia, vasculitis ^{70,71}. In patients with polymorphous light eruption, cardiovascular disorders and chronic kidney disease, it has been HCQ can be used to prevent a flare in those with inadequately demonstrated controlled with standard therapy 72 .

porphyria cutanea tarda have also been demonstrated. judged by recovery in flow-mediated dilation and reduction in Porphyria cutanea tarda, the most common human porphyria, aortic pulse wave velocity), and decrease incidence of represents a disease caused by an iron-related disorder due to new-onset hypertension³. HCQ can protect the annexin V the reduced activity of hepatic enzyme uroporphyrinogen anticoagulant shield against degradation on phospholipid decarboxylase. This disease is effectively and readily treatable double layers by antiphospholipid antibodies and directly with the use of either repeated phlebotomy or use of HCQ reduce the binding of antiphospholipid antibody-b2-100–200 mg twice weekly: however, low-dose HCO is cheaper glycoprotein I complexes to phospholipid double layers ⁷⁸. In and as effective as venesection. HCQ can interact with large addition, HCQ inhibits platelet aggregation in a dose-dependent amounts of porphyrin stored in acidic hepatocyte organelles, manner and reduces the release of arachidonic acid through causing them to be released into the plasma. It should not be activated platelets ^{3,25}. As a result, it is believed that HCQ has a used in patients with severe liver damage or advanced kidney vascular protective effect and prevents the development of failure, since excess porphyrin released into the plasma cannot thrombotic complications although it is not an anticoagulant, be effectively dialyzed ^{73,74}.

disorders such as systemic sclerosis, dermatomyositis and associated with systemic inflammation ^{30,57}. alopecia areata, but the results have not been consistently positive in these cases ^{7,59,75}. Additionally, anecdotal reports exist for the use of HCQ in many other diseases including reticular erythematous mucinosis, annular elastolytic giant cell granuloma, actinic reticuloid, lipodermatosclerosis, chronic ulcerative stomatitis, eosinophilic annular ervthema, Schnitzler syndrome and actinic prurigo ⁷.

Use of HCQ in Cardiovascular Diseases

at higher risk of developing cardiovascular complications clinical remission with the use of HCQ has been reported ⁸⁰, but compared to the general population. This increased risk is subsequently remission has been achieved in another patient ⁸¹. caused by the underlying disease, medications (such as COX2 inhibitors, high-dose glucocorticoids) and the presence of a crucial role in the pathogenesis of Alzheimer's disease, Van comorbidities such as arterial hypertension, hyperlipidemia, Gool et al. has used HCQ treatment in 168 patients for 18 chronic kidney failure, and diabetes mellitus²⁵⁻³¹. HCQ months; however, they have demonstrated that HCQ did not treatment in this group of patients provides a protective effect cause improvement in minimal or mild Alzheimer's disease ⁸². in terms of cardiovascular events in the long term by lowering Contradictory results have also been mentioned recently in fasting glucose levels and reducing hyperlipidemia²⁷.

observational studies with 19,679 CQ/HCQ treated patients and related to HCQ use and Alzheimer's disease risk ^{84,85}. controls has found that CQ/HCQ was associated with an Nevertheless, it has been reported that randomized-controlled

the direct anti-atherosclerosis and vasculoprotective actions of HCO 76,77. HCO also leads to In small clinical studies, positive benefits of HCQ in improvement in endothelial function and vascular stiffness (as thus it appears to be a suitable option in patients with primary HCO treatment has been tried in many dermatological antiphospholipid syndrome and secondary coagulopathy

Use of HCQ in Neurological Diseases

It has been mentioned that HCQ can be effective in patients with progressive neurosarcoidosis who need long-term who are intolerant/unresponsive treatment and to corticosteroids 79. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS) is another disease treated empirically with HCQ but with equivocal results 80,81. Firstly, a patient with We know that patients with inflammatory rheumatic disease are CLIPPERS who demonstrated radiological progression despite

Based on the observation that inflammation plays terms of HCQ and Alzheimer's disease development by Lee et Recently, Liu et al.'s systematic review involved 19 al.⁸³, but later studies have shown no definitive evidence with Alzheimer's disease ^{84,85}.

The possible role of HCO in the treatment of multiple sclerosis (MS) has also recently been reported. HCO has been lysosomes. HCO can inhibit autophagy and facilitate the shown to reduce human microglia activation and reduce disease radiosensitization of tumors. Autophagy is a known survival activity in MS animal models. Koch et al. has demonstrated mechanism in many tumor types. Many studies have proven that pretreatment with HCQ in experimental autoimmune that antitumoral effects can be improved by combining various encephalomyelitis delayed disease onset depending on the dose anticancer drugs with pharmacological or genetic autophagy and that the pretreated animals had less active macrophage / inhibitors. Currently, CO and HCO are the only available microglia in their spinal cords than untreated animals⁸⁶. There autophagy inhibitors in clinical^{8,89}. In the systematic review are ongoing studies testing the effect of HCO in slowing the and meta-analysis of Xu et al., it has shown that adding CO and progression of clinical disability in progressive MS. Mandoj et HCQ as autophagy inhibitors to the treatment of cancer patients al. has shown that high total and LDL cholesterol levels in MS may contribute to higher overall response rate, 1- year overall patients are significantly associated with anti-annexin V survival rate and 6-month progression-free survival rate. They positivity, thereby correlating between neurodegenerative and have found HCQ-based therapy can better benefit than CQthrombogenic mechanisms in MS⁸⁷. Rand et al. has found that based therapy in terms of 1-year overall survival rate and HCQ protects the annexin V anticoagulant shield on 6- month progression-free survival rate. When evaluated in phospholipid bilayers from disruption by antiphospholipid terms of cancer types, the use of autophagy inhibitor has antibodies; therefore, it has been suggested that annexin V associated with the best overall response rate in non-Hodgkin may be a possible new therapeutic target and the use of HCQ lymphoma patients, and the best 1- year overall survival and seems very promising in MS^{3,78}.

Use of HCQ in Oncological Diseases

HCQ can be used in combination with radiotherapy or various chemotherapeutic agents to enhance antineoplastic effects^{8,88-} ⁹⁰. The antitumoral effect of HCQ was determined incidentally, similar to rheumatological disorders, with a decrease in the incidence of Burkitt lymphoma among patients using prophylactic CQ against malaria in Tanzania approximately five decades ago ⁹¹. Since then, CQ and HCQ have been tested in many tumors, including gliomas, breast cancer, head and neck cancers, metastatic cancer, melanoma, multiple myeloma, lymphoma, and leukemia ^{8,90,92-95}. Ongoing research is increasing to support the important adjuvant role of HCQ in the treatment of neoplasms. Although it is not clear yet whether there are differences in terms of antineoplastic therapeutic efficacy between CQ and HCQ, the clinical trials suggest that CQ might be more efficacious than HCQ. However, no comparative clinical trial has been set up to confirm this hypothesis. Consequently, CQ/HCQ acts as an adjuvant anti-cancer agent with direct anti-tumoural effects (autophagy inhibition, inhibition of the TLR9/nuclear factor kappa B signalling pathway, inhibition of CXCL12/CXCR4 signalling, interference with the p53 pathway), modulation of tumour micro-environment (immunomodulation, normalisation of the

studies with larger case series should be performed in patients tumour vasculature, disruption of the CAF-cancer cell interplay) and synergism with approved anti-cancer drugs ⁹⁰.

> By blocking fusion of autophagosomes with 6-month progression-free survival rates in patients with glioblastoma; however, in patients with nonsmall-cell lung cancer or breast cancer overall response and 6-month progression-free survival rates have not significantly improved⁸.

> In summary, the effectiveness of HCQ has been increasingly recognized in nearly all major fields of medicine, including rheumatology, immunology, haematology, oncology, dermatology, cardiology and severe infectious diseases. This old drug still maintains its place in our clinical practice as monotherapy and/or adjuvant therapy in many medical conditions ranging from chronic metabolic diseases to serious life-threatening infections due to its multi-functional beneficial therapeutic effects. In this context, successful results can be achieved with the appropriate dose and duration of HCQ treatment adjusted according to the clinical indication and side effect profile.

REFERENCES

- Ashburn TT, Thor KB. Drug repositioning: identifying and developing new uses for existing drugs. Nat Rev Drug Discov. 2004;3:673-683.
- 2. Ben-Zvi I, Kivity S, Langevitz P, Shoenfeld Y. Hydroxychloroquine: from malaria to autoimmunity. Clin Rev Allergy Immunol. 2012;42:145-153.

- 3. chloroquine and hydroxychloroquine in infectious, immune, neoplastic, and neurological diseases: a mini-review. Clin Drug Investig. 2018;38: 653-671.
- AM, horizons Shukla Wagle Shukla A. Expanding 4. for clinical applications of chloroquine, hydroxychloroquine, and related structural analogues. Drugs Context. 2019; 8. pii: 2019-9-1.
- 5. Schrezenmeier Ε. Dörner т. Mechanisms of action of hydroxychloroquine and chloroquine: implications for 2020;16:155-166. rheumatology. Nat Rev Rheumatol. doi: 10.1038/s41584-020-0372-x.
- Al-Bari MAA. Chloroquine analogues in drug discovery: new di-6. rections of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70:1608-1621.
- 7 Chew CY, Mar A, Nikpour M, Saracino AM. Hydroxychloroguine in dermatology: New perspectives on an old drug. Australas J Dermatol. 2019. doi: 10.1111/ajd.13168.
- Xu R, Ji Z, Xu C, Zhu J. The clinical value of using chloroquine 8. or hydroxychloroquine as autophagy inhibitors in the treatment of cancers: A systematic review and meta-analysis. Medicine (Baltimore). 2018;97: e12912.
- 9. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30:297-308.
- 10. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, et al. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J.2005;2:69.
- 11. Zhou D, Dai SM, Tong Q. COVID-19: a recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 2020. pii: dkaa114.
- 12. Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020:105938.
- 13. Guastalegname M, Vallone A. Could chloroquine 1 hydroxychloroquine be harmful in Coronavirus Disease 2019 (COVID-19) treatment? Clin Infect Dis. 2020. pii: ciaa321.
- 14. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. 28. Int J Antimicrob Agents. 2020:105932.
- 15. Sahraei Z, Shabani M, Shokouhi S, Saffaei A. Aminoquinolines against coronavirus disease 2019 (COVID-19): Chloroquine or hydroxychloroquine. Int J Antimicrob Agents. 2020: 105945.

- Plantone D, Koudriavtseva T. Current and future use of 16. Pagliano P, Piazza O, De Caro F, Ascione T, Filippelli A. Is hydroxychloroquine a possible post-exposure prophylaxis drug to limit the transmission to health care workers exposed to COVID19? Clin Infect Dis. 2020. pii: ciaa320.
 - 17. Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020. pii: ciaa237.
 - 18. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment COVID-19: results of an open-label nonof randomized clinical trial. Int J Antimicrob Agents. 2020: 105949.
 - Wu Z, McGoogan JM. Characteristics of and important lessons 19. from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA. 2020. doi: 10.1001/jama.2020.2648.
 - 20. Wallace DJ. The history of antimalarials. Lupus. 1996;5:S2-3.
 - 21. Krafts K, Hempelmann E, Skórska-Stania A. From methylene blue to chloroquine: a brief review of the development of an antimalarial therapy. Parasitol Res. 2012;111:1-6.
 - 22. Smith CD, Cyr M. The history of lupus erythematosus. From Hippocrates to Osler. Rheum Dis Clin North Am. 1988;14:1–14.
 - 23. Van Beek MJ, Piette WW. Antimalarials. Dermatol Clin. 2001;19:147-160.
 - 24. Kaufmann AM, Krise JP. Lysosomal sequestration of amine-containing drugs: analysis and therapeutic implications. J Pharm Sci. 2007;96:729-746.
 - 25. Jancinová V, Nosál R, Petríková M. On the inhibitory effect of chloroquine on blood platelet aggregation. Thromb Res. 1994;74:495-504.
 - 26. Li R, Lin H, Ye Y, Xiao Y, Xu S, Wang J, et al. Attenuation of antimalarial agent hydroxychloroquine on TNF-a-induced endothelial inflammation. Int Immunopharmacol. 2018; 63:261-269.
 - 27. Hage MP, Al-Badri MR, Azar ST. A favorable effect of hydroxychloroquine on glucose and lipid metabolism beyond its anti-inflammatory role. Ther Adv Endocrinol Metab.2014;5: 77-85.
 - Qiao X, Zhou ZC, Niu R, Su YT, Sun Y, Liu HL, et al. Hydroxychloroquine improves obesity-associated insulin resistance and hepatic steatosis by regulating lipid metabolism. Front Pharmacol. 2019;10:855.

- 29. Wondafrash DZ, Desalegn TZ, Yimer EM, Tsige AG, Adamu 42. Paton NI, Goodall RL, Dunn DT, Franzen S, Collaco-Moraes BA, Zewdie KA. Potential effect of hydroxychloroquine in preclinical diabetes mellitus: a systematic review on and clinical trial studies. J Diabetes Res. 2020;2020:5214751.
- 30. Liu D, Li X, Zhang Y, Kwong JS, Li L, Zhang Y, et al. Chloroquine and hydroxychloroquine are associated with reduced 43. Piconi S, Parisotto S, Rizzardini G, Passerini S, Terzi R, Argenteri cardiovascular risk: a systematic review and meta-analysis. Drug Des Devel Ther. 2018;12:1685-1695.
- 31. Sun L, Liu M, Li R, Zhao Q, Liu J, Yang Y, et al. disease? Med Hypotheses. 2016;93:5-7.
- 32. Raoult D, Drancourt M, Vestris G. Bactericidal effect of doxycycline associated with lysosomotropic agents on Coxiella burnetii in P388D1 cells. Antimicrob Aaents Chemother.1990;34:1512-1514.
- 33. Kersh GJ. Antimicrobial therapies for Q fever. Expert Rev Anti Infect Ther. 2013;11:1207-1214.
- 34. Lagier JC, Fenollar F, Lepidi H, Giorgi R, Million M, Raoult D. Treatment of classic Whipple's disease: from in vitro results to 46. Cragan JD, Mai CT, Petersen EE, Liberman RF, Forestieri NE, clinical outcome. J Antimicrob Chemother. 2014;69:219-227.
- 35. Byrd TF, Horwitz MA. Chloroquine inhibits the intracellular multiplication of Legionella pneumophila by limiting the availability of iron. A potential new mechanism for the therapeutic effect of chloroquine against intracellular pathogens. J Clin 47. Kumar A, Liang B, Aarthy M, Singh SK, Garg N, Mysorekar IU. Invest. 1991;88:351-357.
- 36. Yeo KJ, Chen HH, Chen YM, Lin CH, Chen DY, Lai CM, et a. Hydroxychloroquine may reduce risk of Pneumocystis pneumo- 48. Shiryaev SA, Mesci P, Pinto A, Fernandes I, Sheets N, Shresta S, nia in lupus patients: a Nationwide, population-based case-control study. BMC Infect Dis. 2020;20:112.
- 37. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of 49. chloroquine on viral infections: an old drug against today's diseases? Lancet Infect Dis. 2003;3:722-727.
- 38. Al-Bari MAA. Targeting endosomal acidification by chloroquine analogs as a promising strategy for the treatment of emerging 50. viral diseases. Pharmacol Res Perspect. 2017;5:e00293.
- 39. Misch EA, Hawn TR. Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond). 2008;114:347-60. Engin A, Arslan S, Kizildag S, Ozturk H, Elaldi N, Dokmetas I, et al. 51. Bethel M, Yang FM, Li S, Nahman NS, Oliver AM, Machua W, Toll-like receptor 8 and 9 polymorphisms in Crimean-Congo hemorrhagic fever. Microbes Infect. 2010;12:1071-1078.
- 41. Savarino A, Shytaj IL. Chloroquine and beyond: exploring in HIV/AIDS. Retrovirology. 2015;12:51.

- Y, Gazzard BG, et al. Effects of hydroxychloroquine on immune activation and disease progression among HIV-infected patients not receiving antiretroviral therapy: a randomized controlled trial. JAMA. 2012;308:353-361.
- B, et al. Hydroxychloroquine drastically reduces immune activation in HIV-infected, antiretroviral therapy-treated immunologic nonresponders. Blood. 2011;118:3263-3272.
- Hydroxychloroquine, a promising choice for coronary artery 44. van Loosdregt J, Spreafico R, Rossetti M, Prakken BJ, Lotz M, Albani S. Hydroxychloroquine preferentially induces apoptosis of CD45RO+ effector T cells by inhibiting autophagy: a possible mechanism for therapeutic modulation of T cells. J Allergy Clin Immunol. 2013:131:1443-1446.e1.
 - 45. Wang LF, Lin YS, Huang NC, Yu CY, Tsai WL, Chen JJ, et al. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interferon Cytokine Res. 2015;35: 143-156.
 - Stevens AC, et al. Baseline prevalence of birth defects associated with congenital Zika virus infection-Massachusetts, North Carolina, and Atlanta, Georgia, 2013–2014. MMWR Morb Mortal Wkly Rep. 2017;66:219-222.
 - Hydroxychloroquine inhibits Zika virus NS2B-NS3 protease. ACS Omega. 2018;3:18132-18141.
 - et al. Repurposing of the anti-malaria drug chloroquine for Zika virus treatment and prophylaxis. Sci Rep. 2017;7:15771.
 - Ravindran V, Alias G. Efficacy of combination DMARD therapy vs. hydroxychloroquine monotherapy in chronic persistent chikungunya arthritis: a 24-week randomized controlled open label study. Clin Rheumatol. 2017;36:1335-1340.
 - Yeon Lee J, Lee J, Ki Kwok S, Hyeon Ju J, Su Park K, Park SH. Factors related to blood hydroxychloroquine concentration in patients with systemic lupus erythematosus. Arthritis Care Res (Hoboken). 2017;69:536-542.
 - et al. Hydroxychloroquine in patients with systemic lupus erythematosus with end- stage renal disease. J Investig Med. 2016;64:908-910.
- antirheumatic drugs to reduce immune hyperactivation 52. Floris A, Piga M, Mangoni AA, Bortoluzzi A, Erre GL, Cauli A. Protective effects of hydroxychloroquine against accelerated atherosclerosis in systemic lupus erythematosus. Mediators Inflamm. 2018;2018:3424136.

- 53. Mok CC, Mak A, Ma KM. Bone mineral density in 65. Rivas-Tolosa N, Requena C, Llombart B, Alcalá R, Serra-Guillén C, postmenopausal Chinese patients with systemic lupus erythematosus. Lupus. 2005;14:106-112.
- Melissa-Anzola Α, Uriarte-Isacelay Ε, М et al. Hydroxychloroquine is associated with a lower risk of polyautoimmunity: data from the RELESSER Registry. Rheumatology (Oxford). 2019. pii: kez562.
- 55. Both T, Zillikens MC, Schreuders-Koedam M, Vis M, Lam WK, Weel AEAM, et al. Hydroxychloroguine affects bone 1424-1433.
- SQ, Zhang Н. 56. Wang LW, Wei Ρ, Hua hydroxychloroquine effective in treating ls primary Sjogren's syndrome: a systematic review and meta-analysis. 69. Lueangarun S, Subpayasarn U, Tempark T. Distinctive lupus BMC Musculoskelet Disord. 2017;18:186.
- 57. Tektonidou MG, Andreoli L, Limper M, Amoura Z, Cervera R, Costedoat-Chalumeau N, et al. EULAR recommendations for the 70. Boonpiyathad T, Sangasapaviliya A. Hydroxychloroquine in the management of antiphospholipid syndrome in adults. Ann Rheum Dis. 2019;78:1296-1304.
- 58. Hindi Z, Hussein M, Gad A, Khaled AA, Zahoor T. The role of hydroxychloroguine in catastrophic antiphospholipid syndrome case: Series of two case reports and review of literatu-71. Kolkhir P, Grakhova M, Bonnekoh H, Krause K, Maurer M. re. SAGE Open Med Case Rep. 2018; 6:2050313X18782808.
- 59. Fernandez AP. Updated recommendations on the use of hydroxychloroquine in dermatologic practice. J Am Acad 72. Gruber-Wackernagel Dermatol. 2017;76:1176-1182.
- 60. Li J, Yuan X, Tang Y, Wang B, Deng Z, Huang Y, et al. Int Immunopharmacol. 2020;79:106178.
- 61. Chasset F, Bouaziz JD, Costedoat-Chalumeau N, Francès C, Arnaud L. Efficacy and comparison of antimalarials in cutaneous lupus erythematosus subtypes: a systematic review and meta-analysis. Br J Dermatol. 2017;177:188-196.
- 62. Kumar AB, Blixt EK, Drage LA, El-Azhary RA, Wetter DA. Treatment of morphea with hydroxychloroquine: a retrospective 75. Yun D, Silverberg NB, Stein SL. Alopecia areata treated review of 84 patients at Mayo Clinic, 1996-2013. J Am Acad Dermatol. 2019;80:1658-1663.
- with superficial X-ray-A new therapeutic method in the treatment of morphea profunda. Dermatol Ther. 2019;32: e12896.
- 64. Bhuiyan I, Wahab A, Ali A, Sultana A, Siddique RU, Hawlader AR, 77. Pareek A, Purkait I, Mehta RT, Grover A. Metabolic and cardioet al. Comparative efficacy of hydroxychloroquine and griseofulvin in the treatment of lichen planus. J Pak Assoc Dermatolog. 2010;20:79-83.

- Calomarde L, et al. Antimalarial drugs for the treatment of oral erosive lichen planus. Dermatology. 2016;232:86-90.
- 54. Mena-Vázquez N, Fernández-Nebro A, Pego-Reigosa JM, Galindo 66. Nic Dhonncha E, Foley CC, Markham T. The role of hydroxychloroquine in the treatment of lichen planopilaris: a retrospective case series and review. Dermatol Ther. 2017;30:e12463.
 - 67. Grewal S, Rubin C, Rosenbach M. Antimalarial therapy for granuloma annulare: results of a retrospective analysis. J Am Acad Dermatol. 2017;76:765-767.
 - resorption both in vitro and in vivo. J Cell Physiol. 2018;233: 68. Ahmadzai H, Huang S, Steinfort C, Markos J, Allen RK, Wakefield D,et al. Sarcoidosis: a state of the art review from the Thoracic Society of Australia and New Zealand. Med J Aust. 2018;208:499 -504.
 - panniculitis of scalp with linear alopecia along Blaschko's lines: a review of the literature. Int J Dermatol. 2019;58:144-150.
 - treatment of anti-histamine refractory chronic spontaneous urticaria, randomized single-blinded placebo-controlled trial and an open label comparison study. Eur Ann Allergy Clin Immunol. 2017;49:220-224.
 - Treatment of urticarial vasculitis: a systematic review. J Allergy Clin Immunol. 2019;143:458-466.
 - Α, Byrne SN, Wolf Ρ. Polymorphous light eruption: clinic aspects and pathogenesis. Dermatol Clin. 2014;32:315-34.
 - Hydroxychloroquine is a novel therapeutic approach for rosacea. 73. Singal AK, Kormos-Hallberg C, Lee C, Sadagoparamanujam VM, Grady JJ, Freeman DH Jr, et al. Low-dose hydroxychloroquine is as effective as phlebotomy in treatment of patients with porphyria cutanea tarda. Clin Gastroenterol Hepatol. 2012;10:1402-1409.
 - 74. Singal AK. Porphyria cutanea tarda: Recent update. Mol Genet Metab. 2019;128:271-281.
 - with hydroxychloroquine: A retrospective study of nine pediatric cases. Pediatr Dermatol. 2018;35:361-365.
- 63. Li C, Zhang J, Wang W, Chen Y. Hydroxychloroquine combined 76. Shukla AM, Bose C, Karaduta OK, Apostolov EO, Kaushal GP, Fahmi T, et al. Impact of hydroxychloroguine on atherosclerosis and vascular stiffness in the presence of chronic kidney disease. PLoS One. 2015;10:e0139226.
 - vascular benefits of hydroxychloroquine: exploration in a wider population at high CV risk. Ann Rheum Dis. 2018;77: e59.

- 78. Rand JH, Wu XX, Quinn AS, Ashton AW, Chen PP, Hathcock JJ, et 88. Manic G, Obrist F, Kroemer G, Vitale I, Galluzzi L. Chloroquine al. Hydroxychloroquine protects the annexin A5 anticoagulant shield from disruption by antiphospholipid antibodies: evidence for a novel effect for an old antimalarial drug. Blood. 89. Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr M, Hijlkema KJ, et al. 2010;115:2292-2299.
- 79. Ibitoye RT, Wilkins A, Scolding NJ. Neurosarcoidosis: a clinical approach diagnosis J to and management. Neurol. 2017;264:1023-1028.
- 80. Pittock SJ, Debruyne J, Krecke KN, Giannini C, van den Ameele J, De Herdt V, et al. Chronic lymphocytic inflammation with pontine perivascular enhancement responsive to steroids (CLIPPERS). Brain. 2010;133:2626-2634.
- 81. Tan BL, Agzarian M, Schultz DW. CLIPPERS: Induction and maintenance of remission using hydroxychloroguine. Neurol Neuroimmunol Neuroinflamm. 2015;2:e56.
- 82. Van Gool WA, Weinstein HC, Scheltens P, Walstra GJ. Effect of hydroxychloroquine on progression of dementia in early Alzheimer's disease: an 18-month randomised, double-blind, placebo-controlled study. Lancet. 2001;358: 455-460.
- 83. Lee YH. Chronic hydroxychloroquine/chloroquine exposure for connective tissue diseases and risk of Alzheimer's disease. Ann Rheum Dis. 2019;78:e137.
- 84. Lai SW, Kuo YH, Liao KF. Chronic hydroxychloroguine exposure and the risk of Alzheimer's disease. Ann Rheum Dis. 2019. pii: 94. annrheumdis-2019-216173.
- 85. Fardet L, Nazareth I, Petersen I. Chronic hydroxychloroquine/ chloroquine exposure for connective tissue diseases and risk of Alzheimer's disease: a population-based cohort study. Ann 95. Rheum Dis. 2019;78: 279-282.
- 86. Koch MW, Zabad R, Giuliani F, Hader W, Lewkonia R, Metz L, et al. Hydroxychloroquine reduces microglial activity and attenuates experimental autoimmune encephalomyelitis. J Neurol Sci. 2015;358:131-137.
- 87. Mandoj C, Renna R, Plantone D, Sperduti I, Cigliana G, Conti L, et al. Anti-annexin antibodies, cholesterol levels and disability in multiple sclerosis. Neurosci Lett. 2015;606:156-160.

- and hydroxychloroquine for cancer therapy. Mol Cell Oncol. 2014;1:e29911.
- inhibits Chloroquine autophagic flux by decreasing autophagosome-lysosome fusion. Autophagy.2018; 14: 1435-1455.
- 90. Verbaanderd C, Maes H, Schaaf MB, Sukhatme VP, Pantziarka P, Sukhatme V, et al. Repurposing Drugs in Oncology (ReDO)-chloroguine and hydroxychloroguine as anti-cancer agents. Ecancermedicalscience. 2017;11:781.
- 91. Geser A, Brubaker G, Draper CC. Effect of a malaria suppression program on the incidence of African Burkitt's lymphoma. Am J Epidemiol. 1989;129:740-752.
- 92. Karasic TB, O'Hara MH, Loaiza-Bonilla A, Reiss KA, Teitelbaum UR, Borazanci E, et al. Effect of gemcitabine and nab-Paclitaxel with or without hydroxychloroquine on patients with advanced pancreatic cancer: a phase 2 randomized clinical trial. JAMA Oncol. 2019;5:993-998.
- 93. Patel S, Hurez V, Nawrocki ST, Goros M, Michalek J, Sarantopoulos Vorinostat J. et al. and hydroxychloroguine improve immunity inhibit and autophagy in metastatic colorectal cancer. Oncotarget. 2016;7:59087-59097.
- Rangwala R, Leone R, Chang YC, Fecher LA, Schuchter LM, Kramer A, et al. Phase I trial of hydroxychloroquine with dose- intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014;10:1369-1379.
- Nti AA, Serrano LW, Sandhu HS, Uyhazi KE, Edelstein ID, Zhou EJ, et al. Frequent subclinical macular changes in combined BRAF/ MEK inhibition with high- dose hydroxychloroquine as treatment for advanced metastatic BRAF mutant melanoma: preliminary results from a phase I/II clinical treatment trial. Retina. 2019;39:502-513.