Effect of Cold Application and Heparinoid on Periorbital Edema and Ecchymosis

after Craniotomy: A Randomized Controlled Clinical Trial

Serpil YÜKSEL^{1*}, Neriman AKYOLCU²

¹Necmettin Erbakan University, Faculty of Nursing, Department of Surgical Nursing, Konya, Turkey, ORCID; 0000-0001-6881-828

²Istinye University, Faculty of Health Sciences, Division of Nursing, İstanbul, Turkey, ORCID; 0000-0003-2194-8637

Article info	Abstract	Research Article
Received: 16.02.2020 Received in revised form: 05.04.2020 Accepted: 12.04.2020 Available online: 15.04.2020	This study was performed to determine the effect of cold application and l after craniotomy. The sample of this prospective parallel-arm, randomized underwent anterior craniotomy in two medical faculty hospitals of a univ (1:1:1) to the cold application, heparinoid or control groups. Those p application with gel pack on their periorbital areas for 20 minutes per hou	controlled trial included 90 neurosurgical patients who ersity in Turkey. The patients were randomly assigned patients in the cold application group received cold ur for three days beginning from the 3 rd hour following
<u>Kevwords</u>	craniotomy. On the other hand, the patients in the heparinoid group receiv the 3 rd and 9 th hours after craniotomy and then four times/day at 6-hour ir and ecchymosis were evaluated for three days after craniotomy using Ka	ntervals for three postoperative days. Periorbital edema
Cold application	measurements after craniotomy, except for those at the 3 rd hour, the peri	
Craniotomy	significantly lower than those of both the heparinoid and control group	
Heparinoid Periorbital edema	scores of the cold application group were significantly lower than those o and 3 rd days after craniotomy (p<0.001). In the cold application group, per	
Periorbital ecchymosis	temperature decreased only on the 3 rd day after cranitormy (p=0.01). The cream administered for three days beginning from the 3 rd hour after cranit and ecchymosis, but cold application significantly reduced periorbital eden	ne study revealed that cold application and heparinoid otomy did not prevent postoperative periorbital edema

INTRODUCTION

Anterior craniotomy is an approach that provides access to the skull base in the surgery of anterior circulatory aneurysms and lesions such as tumors located in the anterior cranial fossae¹. As with other cranial interventions, complications leading to increased intracranial pressure (ICP), such as cerebral edema and intracranial hematoma, may occur in the early period after anterior craniotomy¹⁻³. Pupillary examination by nurses is critical in early diagnosis of these complications and ICP increase³. However, subgaleal fluid collection caused by significant soft tissue manipulation and cutting of drainage veins in the frontal region during craniotomy lead to temporary edema and ecchymosis in one or two eyelids of patients in the early postoperative period¹⁻⁴.

Periorbital edema with or without hematoma, which occurs within the first 36 hours after anterior craniotomy³ and lasts 3-7 days^{1,4}, hampers or makes pupillary examination difficult³. In addition, periorbital edema and ecchymosis, a natural result of surgical trauma are not considered as a complication^{3,5}. However, they decrease visual acuity and make it difficult for the patient to see, especially on the first postoperative day and causing fear and discomfort^{3,5,6}. In some

studies, the rate of periorbital edema after anterior craniotomy was $36.8-100\%^{1.4}$, the ecchymosis rate was $62.5\%^5$ and pupillary examination could not be performed for the first 36 hours after craniotomy in 30% of patients with edema³. Despite advances in neurosurgical techniques, subgaleal fluid collection and periorbital edema formation cannot be prevented^{2,3}, and there is no standard care or protocol for control of periorbital edema and ecchymosis⁵.

1am

Preventing or at least reducing the severity of periorbital edema and ecchymosis associated with surgical intervention is essential in maintaining patient safety and increasing patient satisfaction⁶⁻⁹. There are various studies in the literature examining the effect of different methods such as steroids⁹⁻¹², cold application^{5,7,13} and local heparinoid (mucopolysaccharide polysulphate)^{6,8} on periorbital edema and ecchymosis. All of these studies, except the Shin et al.'s study⁵, were conducted with patients treated with rhinoplasty, and there is currently only one study that was conducted with patients with craniotomy. On the other hand, the study by Shin et al.⁵ investigated only the effect of cold application on periorbital edema and facial ecchymosis. In addition, the

authors neither specified the temperature of the material used control, heparinoid and cold application) would be at least 0.30 ecchymosis.

pupillary examination was not performed on patients with there should be a total of 105 people. The study was completed severe periorbital edema in the neurosurgical intensive care with 90 patients. units (NICUs) and clinics, where we conducted the current study, and different procedures were applied to reduce edema the adequacy of the sample size at the end of the study, the and ecchymosis. These applications, which were performed effect size according to time and difference between the groups after periorbital edema and ecchymosis occurred, included (n2) was 94% and 39% for edema, respectively, 81% and 15% covering the periorbital area with saline-soaked gauze, for upper evelid ecchymosis, respectively, and 75% and 22% applying heparinoid cream once a day, or applying cold with for lower evelid ecchymosis, respectively. Post hoc power ice pack 2-3 times a day for about 5-10 minutes. The according to time and difference between the groups was found interventions varied depending on the preference of the nurse to be 100% for edema and lower eyelid ecchymosis and 100% in charge.

In the light of the current literature and clinical sample size was large enough. observations, the purpose of this study was to determine the effect of heparinoid cream and cold application in the prevention of periorbital edema and ecchymosis after anterior The study population consisted of 120 patients who underwent craniotomy and to evaluate the relationship between decrease in the skin temperature and periorbital edema and ecchymosis. The null hypothesis is that there is not a significant difference between the average periorbital edema and ecchymosis scores and older, 2) Glasgow Coma Scale (GCS) score equal to 15, 3) of the control, cold application, and heparinoid groups.

MATERIAL and METHODS

Study Design

This study was performed as a prospective, parallel, three arm [1:1:1], randomized controlled clinical trial at the NICUs and neurosurgery clinics in two medical faculty hospitals of a university in Istanbul. Turkey.

This trial was approved by the Local Ethics Committee of Istanbul Faculty of Medicine (Number=5) and Istanbul Research Ethics Committee-No: 1 (Number=C-032). All patients and their close relatives provided written informed consent before starting the study.

ClinicalTrials.gov The trial is registered at (NCT04119297).

Sample size

The effect size of the difference between the means of periorbital edema and ecchymosis scores to be obtained from the five repeated measures according to the three groups (i.e.,

in cold application nor investigated the relationship between (i.e., medium impact for variance test) with a two-sided type I decrease in skin temperature and periorbital edema and (alpha) error rate of 0.05, 80% power and 16% dropout rate, and the calculations performed in G*Power program showed During our clinical observations, we determined that that each of the groups should have at least 35 patients and

> In the power analysis that was performed to evaluate and 87% for upper evelid ecchymosis, respectively, and the

Participants

anterior craniotomy at the NICUs and neurosurgery clinics between October 2009 and July 2011.

The inclusion criteria were as follows: 1) age 18 years lack of any mental and physical problems that interfere with communication, 4) having normal vital signs, 5) absence of ptosis, 6) voluntary participation in the study, and 6) signing informed consent.

The exclusion criteria were as follows: 1) refuse to participate in the study, 2) pass away during surgery, 3) GCS score less than 15, and 4) presence of postoperative ptosis. As a result of these criteria, 15 patients were excluded from the study during enrollment (Figure 1). Also, 15 patients were excluded from the study during the follow-up: two patients who did not want to receive cold application, four patients who did not want to receive heparinoid cream, five patients who were discharged on postoperative 2nd day, two patients transferred to another hospital and two patients who passed away during the follow-up (Figure 1).

Randomization and masking

The eligible patients were randomly allocated to the groups using the block randomization method, with a block size of three in a 1:1:1 ratio. The random allocation cards were

developed using a computer-generated randomized sequence by a biostatistician who was not associated with the study. Group allocation was concealed using individual sealed opaque As recommended by similar studies with different patient envelopes. As the patients were enrolled in the study, the next $groups^{6,14}$, the investigator nurse (SY) applied the same dose of envelope was extracted and the patients were allocated to the heparinoid cream on the heparinoid group patients' eyelids and groups accordingly. When one of the patients was transferred lid perimeters in the form of a thin layer once at 3rd and 9th from the operating theatre to the NICUs or clinics, the nurse in hours following craniotomy and four times a day on the 1st, 2nd the study (NA) assigned the patient to one of the groups and 3rd days. Before each application, the investigator nurse according to the list in the envelope. The other investigator (SY) cleaned of the heparinoid cream residues using sterile nurse (SY), two observer nurses (DG, YT), and all the patients gauze pad moistened with water. were blinded from group allocation. Also, all the patients were blinded to all the measurements, and the investigator (SY) and adverse events associated with heparinoid cream. two observers (DG, YT) were blinded to each other's measurements.

Interventions

the operating theatre following craniotomy were randomly soaked gauze, application of heparinoid cream once a day, or assigned to the cold application, heparinoid or control groups irregular cold application 2-3 times a day for 5-10 minutes with by the investigator nurse (NA). All the patients were placed in ice pack). These applications were performed by nurses in the the supine position with a head elevation of 30° following NICUs and clinics. Investigators did not perform any craniotomy. Firstly, data concerning the patients' socio- application to this group. demographic and medical characteristics (Table 1) were collected using a data collection form developed based on the relevant literature by the investigator nurse (SY).

Cold application

In order to prevent periorbital edema and facial ecchymosis after craniotomy, it is recommended to start cold application at postoperative 3rd hour for three days, for 20 minutes each hour, except from 10 pm to 7 am⁵. In line with this recommendation, patients in the cold application group received cold application on the periorbital area for 20 minutes per hour beginning from 3rd hour following craniotomy, except from 10 pm to 7 am (in order to allow the patients to sleep and rest), and for three days using gel packs cooled to -14 °C and wrapped in sterile gauze of the same size and weight by the investigator nurse (SY). The cold gel packs were attached to the periorbital area with Velcro strip. Separate gel packs were used for each patient and, after the application, the gel packs were cleaned by washing with soapy water.

No patient required termination from the study due to adverse events associated with cold application.

Heparinoid cream application

No patient required termination from the study due to

Routine clinical applications

The patients in the control group received only routine clinical applications for the control of periorbital edema and The eligible patients transferred to the NICUs or clinics from ecchymosis (i.e. covering the periorbital area with saline-

Outcomes

Primary outcomes

The primary outcome measures of this study were periorbital edema and periorbital ecchymosis. Periorbital edema and ecchymosis of patients in all the groups were evaluated at the 3rd and 9th hours, and on the 1st, 2nd and 3rd days following craniotomy using Kara and Gökalan's Scale. Periorbital edema and ecchymosis are scored between 0 and 4 in this scale, which was developed for patients with rhinoplasty by Kara and Gökalan¹⁰. Edema scoring in the scale: 0: none, 1: minimal, 2: extending onto the iris, 3: covering the iris, 4: massive edema with the evelid swollen shut. Ecchymosis scoring in the scale: 0: none, 1: medial, 2: extending to the pupil, 3: past the pupil, 4: extending to the lateral cantus¹⁰.

Periorbital edema and ecchymosis were evaluated by the investigator nurse (SY) and two independent clinical nurse observers (DG, YT) who did not know the purpose of the study and the interventions delivered to the patients. On the other hand, these nurse observers were trained by the investigator nurse (SY) about Kara & Gökalan's Scale and scoring of periorbital edema and ecchymosis. The investigator (SY) and

two observers (DG, YT) were blinded to the measurements post hoc test (Bonferroni analysis) were used to determine the performed by each other. The reliability between the five time-dependent change of periorbital edema and ecchymosis repetitive measurements by the investigator (SY) and the two scores measured at different times within the group. The observers (DG, YT) was assessed with Intraclass Correlation relationship between change in periorbital skin temperature Coefficients (ICC) (i.e. two-way random effects model: after cold application and periorbital edema and ecchymosis consistency). ICC analysis showed that there was a perfect were evaluated using Pearson correlation analysis. The agreement (ICC value: > 95%) between their periorbital edema reliability between the observers was verified using ICC. The (ICC values \geq 97%), upper evelid ecchymosis (ICC values \geq level of statistical significance was set at 95% confidence 98%), and lower evelid ecchymosis (values \geq 98%) scores interval (CI) (p<0.05). (p < 0.001). Since there was a perfect agreement between the observers' and the investigator's results, the data were analyzed using the investigator's measurements.

Secondary outcomes

The secondary outcome measures of this study were change in periorbital skin temperature after cold application using gel pack cooled to -14 °C and the relationship between this change and periorbital edema and ecchymosis scores. The temperature of the gel packs was measured by the investigator nurse (SY) prior to each application using a digital thermometer capable of measuring -50-300 °C with an accuracy of ±0.1 °C (Barbecue Thermometer TBT-08H, Guangdong, China). Periorbital skin temperature was also measured before and after each application using a digital thermometer (ThermoFlash LX-26, Visiomed, France) with a range of measurement of 0-60 °C, an accuracy of ±0.2 °C, and a time of measurement of five seconds.

Data analysis

Data were analyzed using the Statistical Package for Social Sciences (SPSS) (IBM Corp. Released 2011, Version 20.0. Armonk, NY: IBM Corp.). Continuous data were described using mean, standard deviation, standard error, and 95% confidence interval (CI) values, and categorical variables were analyzed using frequency and percentage. Pearson's Chi-square test and one-way ANOVA were used to compare the similarity of the groups in terms of their socio-demographic and medical characteristics.

Parametric tests were used in the analysis because of continuous variables met the assumptions of normality and homogeneity. Whether there was a difference in periorbital edema and ecchymosis scores between the groups was evaluated using one-way ANOVA and post hoc test (Tukey HSD test or Dunnett T3). The repeated measures ANOVA and

RESULTS

Participant characteristics

One hundred and five patients were enrolled in the study. Approximately, 15% of the sample was lost to follow-up. The study was completed with 90 patients randomized into the cold application, the heparinoid and the control groups (in a 1:1:1.1 ratio) (Figure 1).

The mean age of the patients was 47.68 years (SD=13.71), most of them were female (67.8%), 80% underwent pterional craniotomy. As can be seen in Table 1, the patients in the three groups were similar to each other in terms of characteristics (p>0.05).

Primary outcomes

Periorbital edema score increased in all the three groups beginning from the 3rd hour following craniotomy until the 1st day. There was an insignificant increase on the 2nd postoperative day only in the control group. Periorbital edema decreased significantly in the cold application group on the 2nd postoperative day and in the heparinoid and control groups on the 3^{rd} postoperative day (p<0.05, Table 2). According to the results of the comparison between the groups, in all the measurements except for those at the 3rd hour following craniotomy, edema score was significantly lower in the cold application group than in the control and heparinoid groups (p<0.05). There was a significant difference between the heparinoid and control groups only on the 3rd postoperative day in favor of the heparinoid group (p < 0.05, Table 2).

Upper and lower eyelid ecchymosis scores increased in all the groups beginning from the 3rd hour after craniotomy. These scores reached the highest level on the 1st postoperative day in the heparinoid and cold application groups and on the 2nd day in the control group. Both upper and lower eyelid ecchymosis scores were significantly decreased in the cold

application group on the 3rd postoperative day (p<0.05, Table *Secondary outcomes*

2), but there was not any significant decrease in the heparinoid and control groups (p>0.05, Table 2). According to the results of the comparison between the groups, the upper and lower eyelid ecchymosis scores of the cold application group were significantly lower than the scores of those in the heparinoid group at the 9th hour after craniotomy and then both the heparinoid and control groups on the 1st, 2nd and 3rd postoperative days (p<0.05, Table 2). There was no significant difference between the heparinoid and control groups in any of the measurements (p>0.05, Table 2).

The mean temperature of the periorbital skin, which was 33.81 °C (SD=0.85 °C) prior to cold application, decreased to 24.61 °C (SD=1.15 °C) after cold application. The mean decrease in the periorbital skin temperature was 9.20 °C (SD=0.94 °C). It was determined that there was a significant relationship between decrease in periorbital skin temperature and periorbital edema score only on the 3rd day after craniotomy, and that edema score decreased as the temperature decreased (p<0.05, Table 3). No significant correlation was found between the decrease in skin temperature and upper and lower eyelid ecchymosis scores (respectively p>0.05; p=0.05, Table 3).

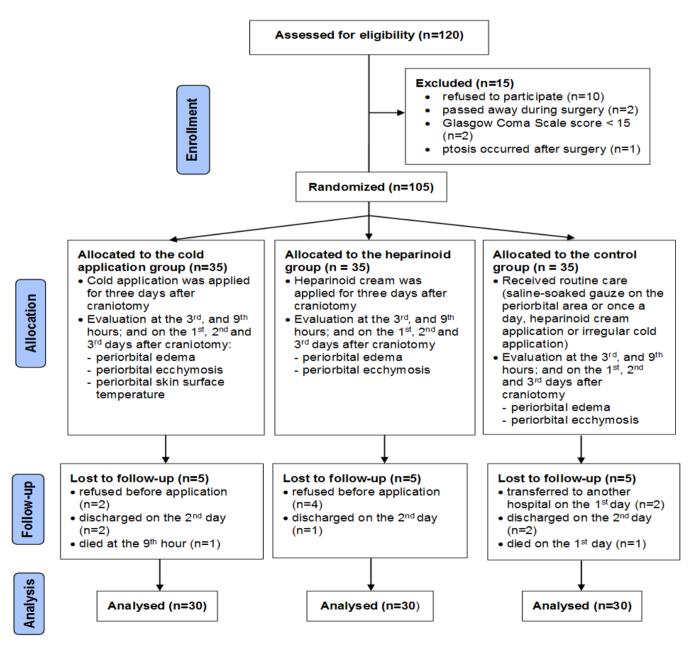


Figure 1. The consolidated standards of reporting trials diagram

Table 1. Demographic and medical characteristics of patients.

Characteristics	Total	Control (n=30)	Heparinoid (n=30)	Cold application (n=30)	Test / p value
Age (year), Mean ± SD	47.68 ± 13.71	51.37 ± 11.32	48.70 ± 14.15	42.97 ± 14.49	3.078 / 0.05*
Gender n (%)	1	1	1		1.323 / 0.52 ^ψ
Female	61 (67.8)	22 (73.3)	21 (70.0)	18 (60.0)	-
Male	29 (32.2)	8 (26.7)	9 (30.0)	12 (40.0)	-
Diagnosis n (%)					
Brain tumor	43 (47.8)	15 (50.0)	14 (46.7)	14 (46.7)	4.388 / 0.36 ^v
Cerebral aneurysm	30 (33.3)	11 (36.7)	12 (40.0)	7 (23.3)	_
Aneurysmal SAH	17 (18.9)	4 (13.3)	4 (13.3)	9 (30.0)	
Type of surgery n (%)		-			
Aneurysm clipping	47 (52.2)	15 (50.0)	16 (53.3)	16 (53.3)	0.089 / 0.96 ^ψ
Tumor resection	43 (47.8)	15 (50.0)	14 (46.7)	14 (46.7)	_
Type of craniotomy n (%)					
Pterional	72 (80.0)	24 (80.0)	23 (76.7)	25 (83.3)	0.417 / 0.81 ^ψ
Temporal	18 (20.0)	6 (20.0)	7 (23.3)	5 (16.7)	
Duration of the surgery, hour, Mean ± SD	3.97 ± 2.28	4.40 ± 2.69	3.80 ± 2.25	3.70 ± 1.80	0.827 / 0.44*
Preoperative steroid dose (mg), Mean ± SD	98.81 ± 75.64	93.63 ± 63.67	129.6 ± 98.68	65.50 ± 34.74	1.716 / 0.20*
Postoperative steroid dose (mg), Mean ± SD	95.69 ± 75.64	71.19 ± 15.92	49.77 ± 10.61	99.56 ± 21.23	0.340 / 0.71*
Steroid using duration (day), Mean ± SD	9.8 ± 6.97	10.57 ± 7.39	10.82 ± 7.98	8.05 ± 5.24	1.062 / 0.35*
Osmotic diuretic dose (g), Mean ± SD	28.63 ± 14.0	34.12 ± 15.44	27.78 ± 13.96	23.75 ± 10.88	2.444 / 0.09*
NSAID dose (mg), Mean ± SD	138.0 ± 147.03	168.67 ± 178.05	107.12 ± 104.84	170 ± 194.72	1.108 / 0.34*

SD=Standard deviation; NSAID=Non-steroid anti-inflammatory drug; SAH=Subarachnoid hemorrhage * One-way ANOVA * Pearson's Chi-square test

	Control ¹ (n=30)		Henarinoid ² (n=30)		Cold annlication ³ (n=30)	n=30)		
Evaluation time								Difference
	Mean \pm SD	95% CI	$Mean \pm SD$	95% CI	$Mean \pm SD$	95% CI	F*/ p value	
Periorbital edema score	score							
3 rd hour ^a	0.40 ± 0.93	0.05-0.75	0.40 ± 0.72	0.13-0.67	0.37 ± 0.67	0.12-0.62	0.018/0.98	
9 th hour ^b	1.90 ± 1.27	1.43-2.37	2.37 ± 0.96	2.01-2.73	1.13 ± 0.82	0.83-1.44	10.867 / < 0.001	1, 2 > 3
1 st day ^c	3.72 ± 0.49	3.53-3.90	3.90 ± 0.24	3.80-3.99	2.08 ± 0.49	1.90-2.27	167.553 /< 0.001	1, 2 > 3
2 nd day ^d	3.87 ± 0.22	3.78-3.95	3.63 ± 0.39	3.49-3.78	1.68 ± 0.58	1.47-1.90	239.323 / < 0.001	1, 2 > 3
3 rd day ^e	3.37 ± 0.45	3.20-3.54	2.83 ± 0.74	2.56-3.11	1.00 ± 0.63	0.76-1.24	121.397 / < 0.001	1 > 2 > 3
F [*] / p value Difference	142.665 / < 0.001 a < b < c, d, e		160.687 / < 0.001 a < b, c, d, e		58.527 / <0.001 a < b, c, d, e			
	d > c		$\mathbf{b}, \mathbf{e} < \mathbf{c}, \mathbf{d}$		b < c, d c > d > e			
Upper evelid ecchymosis score	vmosis score							
3 rd hour ^a	111 - 27 0	0.01.0.00	0.07 - 1.60	0.39-1.57	0 4 0 1 1 2	0.18-1.02	CC 07 F31 1	
	$0.4/ \pm 1.14$	0.04-0.89	$0.9 / \pm 1.03$		0.00 ± 1.13		1.154 / 0.52	
9 th hour ^b	2.73 ± 1.48	2.18-3.29	3.33 ± 1.09	2.93-3.74	1.80 ± 1.63	1.19-2.41	8.887 / < 0.001	2 > 3
1 st day ^c	3.40 ± 0.89	3.07-3.73	3.80 ± 0.66	3.55-4.05	2.60 ± 1.43	2.07-3.13	10.235 / < 0.001	1, 2 > 3
2 nd day ^d	3.53 ± 0.82	3.23-3.84	3.63 ± 0.89	3.30-3.97	2.50 ± 1.47	1.96-3.04	9.887 / < 0.001	1, 2 > 3
3 rd day ^e	3.43 ± 1.01	3.06-3.81	3.53 ± 0.94	3.18-3.88	1.93 ± 1.57	1.35-2.52	16.549 / < 0.001	1, 2 > 3
F [†] /p value	71.636 / < 0.001		50.102 / < 0.001		23.630 / <0.001			
Difference	a < b, c, d, e b < d		a < b, c, d, e		a < b, c, d, e b < c c, d > e			
Lower eyelid ecchymosis score	1ymosis score							
3rd hour ^a	0.40 ± 0.97	0.04-0.76	0.70 ± 1.39	0.18-1.22	0.33 ± 0.88	0.00-0.66	0.938 / 0.40	
9th hour ^b	2.33 ± 1.42	1.80-2.86	2.83 ± 1.37	2.32-3.34	1.50 ± 1.41	0.97-2.03	6.952 / 0.002	2 > 3
1st day ^c	3.10 ± 0.96	2.74-3.46	3.30 ± 1.15	2.87-3.73	2.23 ± 1.28	1.76-2.71	7.467 / 0.001	1, 2 > 3
2nd day ^d	3.13 ± 1.07	2.73-3.53	3.20 ± 1.27	2.73-3.67	1.97 ± 1.19	1.52-2.41	10.358 / <0.001	1, 2 > 3
3rd day ^e	3.07 ± 1.14	2.64-3.49	3.07 ± 1.39	2.55-3.58	1.33 ± 1.30	0.85-1.82	18.356 / <0.001	1, 2 > 3
F [†] /p value	67.961/ < 0.001		39.841/ < 0.001		22.666/ <0.001			
Difference	a < b < c, d, e		a < b, c, d, e		a < b, c, d, e b < c			
		4	-		r, u / c			

Table 2. Comparison of the periorbital edema and ecchymosis scores of the patients

SD = Standard deviation; CI = Confidence interval, *One-way ANOVA, †Repeated Measures ANOVA

Table 3. Relationship between decrease in skin temperature and periorbital edema and ecchymosis scores

Periorbital skin temperature (°C)				Correlation	Correlation		
	Before cold	After cold applica-	Average	Periorbital	Upper eyelid	Lower eyelid ec-	
Evaluation time	application	tion	difference	edema	ecchymosis	chymosis	
	Mean \pm SD	Mean ± SD	Mean ± SD	r_p/p value	r _p / p value	r _p / p value	
3 rd hour	34.00 ± 1.26	25.06 ± 2.67	8.94 ± 2.46	0.27 / 0.14	0.30 / 0.11	0.36 / 0.05	
9 th hour	33.71 ± 1.26	24.32 ± 2.00	9.40 ± 1.62	0.11 / 0.56	0.16 / 0.41	0.19 / 0.32	
1 st day	33.68 ± 0.96	24.11 ± 1.96	9.58 ± 2.17	-0.11 / 0.58	-0.17 / 0.38	0.14 / 0.45	
2 nd day	33.88 ± 0.90	24.73 ± 1.59	9.16 ± 1.30	-0.27 / 0.14	-0.20 / 0.29	-0.14 / 0.47	
3 rd day	33.77 ± 0.90	24.82 ± 1.18	8.94 ± 0.92	-0.45 / 0.01	-0.25 / 0.18	-0.36 / 0.05	
Total	33.81 ± 0.85	24.61 ± 1.15	9.20 ± 0.94				

 $SD = Standard deviation, r_p = Pearson correlation$

DISCUSSION

In this randomized clinical trial, we determined that regular cold application for 3 days beginning from the 3^{rd} hour after anterior craniotomy did not prevent periorbital edema and ecchymosis, but it was still effective in alleviating the severity of edema and ecchymosis. None of the patients in the cold application group had edema severe enough to prevent pupillary examination (≥ 3 points) or ecchymosis severe enough to pass through the pupil and extend to the lateral cantus (≥ 3 points). In addition, we found that local heparinoid was not effective in reducing and preventing craniotomy-induced periorbital edema and ecchymosis. These findings can be presented as evidence-based information in the limited literature in this field.

Effect of cold application

Cold application reduces blood leakage by causing vasoconstriction, slows down the metabolism of the damaged area and surrounding tissues, and reduces the inflammatory response in the damaged tissue^{15,16}. These physiological effects of cold application are utilized to prevent and reduce swelling, edema and ecchymosis associated with soft tissue trauma^{7,16}.

Similar to the study by Shin et al.⁵, which reported that cold application was effective on craniotomy-induced periorbital edema, the periorbital edema score of our patients in the cold application group was significantly lower than the scores of those in the control group in all the measurements except for the 3rd postoperative hour. Again similar to that study, none of our patients in the cold application group developed massive edema that would cover the iris or completely make the eyelid swollen shut. Shin et al.⁵ found that edema increased until the 2nd postoperative day in the cold application group and until the 3rd postoperative day in the control group. In our study, however, edema increased until the

 1^{st} postoperative day in the cold application group and until the 2^{nd} postoperative day in the control group. The reason for the difference is probably the fact that the patients in Shin at al.'s study⁵ had longer surgical intervention and some patients required reoperation within three days after craniotomy.

The periorbital edema score (≥ 1 point) of our patients in the cold application group was significantly higher than the score (0.59 points) determined by Shin et al.⁵ in all the measurements except for the 3rd hour after craniotomy. This could be due to the fact that cold application was performed to the craniotomy incision area as well as the periorbital area in Shin at al.'s study⁵. Cold application to the incision area may reduce edema formation by suppressing the inflammatory response secondary to tissue trauma and slowing tissue metabolism. Future studies to prove the effect of cold a pplication on the craniotomy incision area on periorbital edema are important as they could guide the care protocols to be implemented by nurses.

There are currently no studies in the literature examining the effect of cold application on upper and lower evelid ecchymosis due to craniotomy. Shin et al.⁵ evaluated both periorbital and facial ecchymosis and found that the rate of ecchymosis was lower in the cold application group and facial ecchymosis gradually deteriorated in all the patients, including those who underwent cold application, but they presented no information about upper and lower evelid ecchymosis. Therefore, our findings showing that both upper and lower eyelid ecchymosis scores of the patients in the cold application group were significantly lower than the scores of the patients in the control group in all the measurements except for the 3rd postoperative hour after craniotomy provide valuable evidence of the effect of cold application on craniotomy-induced upper and lower eyelid ecchymosis.

Also, similar to our study, in few studies with different

patient groups, it was found that cold application significantly craniotomy⁵ which confirms our thinking about the difference. reduced periorbital edema and ecchymosis scores^{7,13}. Furthermore, the meta-analysis results of these studies showed compared with the scores of the patients who received cold that periorbital edema and ecchymosis scores of rhinoplasty application, the periorbital edema and ecchymosis scores of the patients who received cold application beginning from the first heparinoid group were significantly higher in all the postoperative hour were significantly lower on the first dav^{17} . measurements except for the one at the 3rd hour after cranioto-Current literature knowledge and our research findings suggest my. This finding suggests that cold application is more that cold application administered beginning from the 1st and effective than heparinoid cream in controlling periorbital 3rd postoperative hours is effective in reducing the severity of edema and ecchymosis after anterior craniotomy. periorbital edema and ecchymosis after surgical trauma.

Effect of local heparinoid

Heparinoid (mucopolysaccharide polysulphate), semisynthetic glycosaminoglycan, is effective on blood provided information about the decrease in periorbital skin coagulation and fibrinolysis, which increases the tissue temperature after cold application, but none reported the metabolism and provides absorption inflammatory exudate¹⁴, and reduces inflammation signs and study provides evidence that cold application with gel packs symptoms, especially in subcutaneous hematoma and sports can be applied to the periorbital area with an average injuries^{6,8}. In the literature, there are currently two studies temperature of -14 °C for 20 minutes each hour without causing evaluating the effect of heparinoid on periorbital edema and any complications. ecchymosis after rhinoplasty^{6,8}. However, there are currently no studies performed with craniotomy patients. This is the first decreased by 9.82 °C on average after cold application for 20 study to provide evidence-based information on the effect of minutes. Similarly, in our study, periorbital skin temperature heparinoid on periorbital edema and ecchymosis following decreased by 9.20 °C after cold application. Also, another study anterior craniotomy.

severe enough to cover the iris (\geq 3 points) and ecchymosis minutes¹⁶. severe enough to cover past the pupil (≥ 3 points) occurred in the heparinoid group. These findings are similar to those of a individuals' ankle skin temperature was found to decrease study indicating that local heparinoid has no effect on 13.19 °C on average after cold application for 20 minutes with periorbital edema and ecchymosis⁶. In contrast, Şimsek et al.⁸ gel packs cooled to -14 °C. The reason for this difference may found that periorbital edema and ecchymosis scores of the be the application of cold gel pack to different areas outside the patients in the heparinoid group were significantly lower on the periorbital area and to healthy tissue without trauma-induced 1st day after rhinoplasty. In the same study⁸, similar to our inflammatory response. study, no significant difference was found between the periorbital edema and ecchymosis scores of the patients in the relationship between periorbital edema and ecchymosis scores heparinoid and control groups on the 2nd postoperative day. In and the decrease in the skin temperature of the periorbital area. addition, unlike the results from Kelles et al.'s study⁶, the In our study, we found that the decrease in the skin temperature edema scores of our patients in the heparinoid group on the 3rd did not affect the periorbital ecchymosis score and that the postoperative day were significantly lower than those in the periorbital edema score reduced in parallel with the decrease in control group. The difference may be due to the different the skin temperature only on the 3rd postoperative day. Further patient groups in the studies mentioned. In fact, research studies investigating the relationship between the decrease in suggests that periorbital edema after rhinoplasty is critical in the skin temperature and periorbital edema and ecchymosis are the first hours¹⁰, and progressively increases for three days after necessary as they would provide evidence of optimal

An important finding of the study was that, when

Change of skin temperature after cold application

Among those studies evaluating the effect of cold application a on periorbital edema and ecchymosis^{5,7,13}, only one study⁵ of superficial temperature of the tool used in cold application. Therefore, this

Shin et al.⁵ found that periorbital skin temperature showed that the average limb temperature of patients with soft Similar to our patients in the control group, edema tissue injury decreased by 9.77 °C after ice pack therapy for 20

Unlike our study, in a study by Kennet et al.¹⁵, healthy

There are currently no studies examining the

temperature reduction required for the maximal effect of cold application since their results could guide the establishment of application.

Limitations, future directions, and implications

Our study had several limitations. The most significant of these Acknowledgements limitations was that periorbital edema and ecchymosis were The authors would like to thank clinical nurse observers Dilek evaluated only in the first three postoperative days because Güven and Yüksel Turan for their contributions during the some of the patients in the clinics where this study was application period. The authors also thank Istanbul University conducted were discharged after the 3rd postoperative day. This Scientific Research Projects Unit for their grant support prevented the determination of whether the effect of cold (Project No: 3791). application would continue in the following days. Future studies with longer follow-up periods are vital because they would contribute to the limited literature⁵ suggesting that the The authors declare that they have no conflict of interests. effect of cold application on periorbital edema after craniotomy is continuous between the 9th hour and 7th day. Another *Financial disclosure* limitation of the study was that cold application and heparinoid This study was supported by the Istanbul University Scientific cream were administered at the 3rd hour after craniotomy and Research Projects Unit (Project No=3791). The funder only not at the first hour. Our findings showing that edema and provided financial support for the equipment and had no role in ecchymosis occurred at the 3rd hour after craniotomy in all of the study design, conduct, analysis and preparation of the our groups, albeit at a low degree, suggest that prevention manuscript. interventions should be performed at an early stage. Future studies could investigate the preventive effect of cold REFERENCES application or heparinoid on periorbital edema and ecchymosis 1. at the first hour after craniotomy. The fact that skin temperature should be kept in the range of 10-15 °C in order to decrease the cellular metabolism and improve the therapeutic effect of cold application¹⁵ draws attention to another important limitation of our study. In our study, the periorbital skin temperature decreased to an average of 24.61 °C after cold application. In the literature, there is currently no evidence of a change in 3. tissue due to decreasing the periorbital skin temperature to 10-15 °C. Therefore, future laboratory studies are needed to investigate the change in periorbital tissue caused by these low 4. temperatures and its effect on periorbital edema and ecchymosis.

Our study revealed that cold application, an independent nursing practice, was effective in reducing the severity of periorbital edema and ecchymosis following anterior craniotomy, and that heparinoid and routine clinic 6 applications were not as effective. These findings contribute to the literature suggesting that cold application is an effective, inexpensive, safe and easily applicable method for reducing craniotomy-induced periorbital edema and ecchymosis. It is important that future studies investigate this effect of cold

protocols for control of periorbital edema and ecchymosis after craniotomy and guide the spread of cold application.

Conflicts of Interest

- Rychen J, Croci D, Roethlisberger M, Nossek E, Potts M, Radovanovic I, et al. Minimally invasive alternative approaches to pterional craniotomy: a systematic review of the literature. World Neurosurgery. 2018; 113:163-179.
- 2 Beseoglu K, Lodes S, Stummer W, Steiger HJ, Hänggi D. The transorbital keyhole approach: early and long-term outcome analysis of approach-related morbidity and cosmetic results. Journal of Neurosurgery. 2011; 114:852-856.
- Torres AC, Siciliano MLIP, Diccini S. Interference and characteristics of periorbital edema in pupil examination after craniotomy. A cta Paulista de Enfermagem. 2015; 28:7-12.
- Hafez MME, Abdel Bary TH, Ismail AS, Mohammed MAM. Frontolateral key hole craniotomy approach to anterior cranial base. Zagazig University Medical Journal. 2013; 19:91-98.
- Shin YS, Lim NY, Yun SC, Park KO. A randomized controlled 5. trial of the effects of cryotherapy on pain, eyelid oedema and facial ecchymosis after craniotomy. Journal of Clinical Nursing. 2009; 18:3029-3036.
 - Kelleş M., Erdem T., Fırat Y., Kalcıoğlu MT., Akarçay M., Selimoğlu E., Yoloğlu S. Efficacy of local heparinoids on preventing edema and ecchymosis after rhinoplasty. Journal of ear, nose, and throat, 2010; 20(4), 191-194.
- Kaviani H, Abdiyazdan GH, Ghodousi A, Paryavi B. The impact 7. of cryotherapy on reducing postoperative periorbital ecchymosis

and nasal edema in patients undergoing rhinoplasty. Bulletin of Environment, Pharmacology and Life Sciences. 2015; 4:22–29.

- Simsek G, Sari E, Kilic R, Bayar Mulluk N. Topical application 8 of arnica and mucopolysaccharide polysulfate attenuates periorbital edema and ecchymosis in open rhinoplasty: a randomized 14. controlled clinical study. Plastic and Reconstructive Surgery. 2016; 137:530e-535e.
- Sanober A, Rashid M, Khan MI, Rehman SU, Yousaf S, Rehman 9. Orakzai IU, et al. Use of steroids in rhinoplasty with lateral 15. osteotomies for reducing postoperative oedema. Journal of Ayub Medical College, Abbottabad. 2018; 30:45-48.
- edema, ecchymosis, and intraoperative bleeding in rhinoplasty. Plastic and Reconstructive Surgery. 1999; 104:2213-2218.
- 11. Hwang SH, Lee JH, Kim BG, Kim SW, Kang JM. The efficacy of steroids for edema and ecchymosis after rhinoplasty: a meta-analysis. Laryngoscope 2015; 125: 92-98.
- 12. Mehdizadeh M, Ghassemi A, Khakzad M, Mir M, Nekoohesh L, Moghadamnia A, et al. Comparison of the effect of dexamethasone and tranexamic acid, separately or in combination on post-rhinoplasty edema and ecchymosis. A esthetic Plastic

Surgerv. 2018; 42: 246-252.

- 13. Kayiran O, Calli C. The effect of periorbital cooling on pain, edema and ecchymosis after rhinoplasty: a randomized, controlled, observer-blinded study. Rhinology. 2016; 54: 32-37.
- Sindet-Pedersen S, Lund E, Simonsen EK, Stenbjerg S. The anti-inflammatory effect of organo-heparinoid cream after bilateral mandibular osteotomies. International Journal of Oral and Maxillofacial Surgery. 1989; 18:35-38.
- Kennet J, Hardaker N, Hobbs S, Selfe J. Cooling efficiency of 4 common cryotherapeutic agents. Journal of Athletic Training. 2007; 42:343-348.
- 10. Kara OC, Gökalan I. Effects of single-dose steroid usage on 16. Kuo CC, Lin CC, Lee WJ, Huang WT. Comparing the antiswelling and analgesic effects of three different ice pack therapy durations: a randomized controlled trial on cases with soft tissue injuries. The Journal of Nursing Research. 2013, 21:186-194.
 - 17. Lee HS, Yoon HY, Kim IH, Hwang SH. The effectiveness of postoperative intervention in patients after rhinoplasty: a meta-analysis. European Archives of Oto-rhino-laryngology. 2017; 274:2685-2694.